

# **3D-HST Documentation**

Release 4.1

I. Momcheva, R. Skelton, K. Whitaker, G. Brammer

September 03, 2014

# CONTENTS

| 1 | Introduction                                                                                                                                                                            | 1                                       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 2 | Known Issues and Changes                                                                                                                                                                | 3                                       |
| 3 | <b>3D-HST Photometric Catalogs</b> 3.1The Photometric Catalogs3.2Photometric Redshift Catalogs3.3Rest-Frame Colors3.4Stellar Population Parameters3.5Individual Fields3.6Master Catalog | 5<br>6<br>7<br>9<br>10<br>31            |
| 4 | ACS/WFC3 Mosaics         4.1       AEGIS         4.2       COSMOS         4.3       GOODS-N         4.4       GOODS-S         4.5       UDS                                             | <b>33</b><br>33<br>34<br>35<br>36<br>37 |
| 5 | Ancillary Mosaics         5.1       AEGIS         5.2       COSMOS         5.3       GOODS-N         5.4       GOODS-S         5.5       UDS                                            | <b>39</b><br>39<br>41<br>44<br>45<br>48 |

# INTRODUCTION

3D-HST is an HST Treasury program to provide WFC3 and ACS grism spectroscopy over four extra-galactic fields (AEGIS, COSMOS, GOODS-South, and UDS), augmented with previously obtained data in GOODS-North. In addition to the grism spectroscopy, the project provides reduced WFC3 images in all five fields, extensive multi-wavelength photometric catalogs, and catalogs of derived parameters such as redshifts and stellar masses. These ancillary data come from a wide range of other public programs, most notably the CANDELS Multi-Cycle Treasury program (Grogin et al. 2011, Koekemoer et al. 2011).

This document describes the first comprehensive photometry release of 3D-HST, dubbed version 4.1. This release includes reduced WFC3 F125W, F140W, and F160W image mosaics of all five CANDELS/3D-HST fields; all ancillary imaging at other wavelengths that was used in the analysis; multi-wavelength photometric catalogs; and various derived parameters including photometric redshifts and stellar masses. In this document we provide an overview of the data products; the data and analysis are described fully in Skelton et al. (2014).

This release follows the initial v0.5 release that accompanied the survey description paper (Brammer et al. 2012) and the v3.0 release which included the deepest near-IR HST grism spectra currently in existence, extracted from the 8-17 orbit depth observations in the Hubble Ultra Deep Field (van Dokkum et al., 2013, arxiv:1305.2140). The next release will focus on the grism spectroscopy (Momcheva et al., in preparation). As described in Skelton et al. (2014), the grism spectra are tied directly to the photometric catalogs described here.

When using data from the 3D-HST survey, please include the following acknowledgement: "This work is based on observations taken by the 3D-HST Treasury Program (HST-GO-12177 and HST-GO-12328) with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555." and cite the following papers: "3D-HST WFC3-Selected Photometric Catalogs in the Five CANDELS/3D-HST Fields: Photometry, Photometric Redshifts and Stellar Masses", Skelton et al., 2014, ApJS, submitted (arXiv:1403.3689), and "3D-HST: A Wide-Field Grism Spectroscopic Survey with the Hubble Space Telescope", Brammer et al., 2012, ApJS, 200, 13. If the UDF spectra are used please also cite Brammer et al., 2013, ApJ, 765, L2.

The v4.1 release is currently located at: http://3dhst.research.yale.edu/Data.html For question regarding this release, please contact Ivelina Momcheva (ivelina.momcheva at yale.edu)

# **KNOWN ISSUES AND CHANGES**

The following are the currently known issues:

- The GOODS-N photometric catalog contains negative errors and contamination values in the IRAC-1 and IRAC-2 bands for ~1500 objects. We are investigating the issue.
- The transmission curves for the Subaru B, V, and z' bands in GOODS-N use the sensitivity for the MIT CCD rather than the older SIT CCD. Additionally, the i' and r' filter transmission curves were used for the Ic and Rc filters. These issues are likely mostly accounted for by the zero-point corrections. Updated transmission curves will be used in future releases.
- The transmission curves for the Subaru B, Rc, i', and z' bands in UDS did not include the atmospheric transmission. This issue was likely mostly accounted for by the zero-point corrections. Updated transmission curves will be used in future releases.
- The abbreviations for the GOODS-N and GOODS-S fields in the master photometric catalog are both "g". We suggest the use of RA and Dec alone or in combination with the "field" column to select objects from either field.

August 22, 2014 changes:

• A major update has been made to the UDS photometric catalog, EAZY and FAST outputs. We traced a bug being reported in the released v4.1 UDS catalogs to a difference between the catalog available for download from the 3D-HST website and the one for internal use. The photometric catalog provided on the website contained an obvious bug which affected the fluxes in F125W, F140W, J, H, K and all IRAC bands, the tot\_cor and wmin\_wfc3 columns, as well as the EAZY and FAST outputs derived from it. The RF colors and the master catalog were not affected. Note that the plots in the accompanying paper all use the correct version. The UDS catalog has been updated to the correct version, which will be called v4.2 to avoid confusion.

May 19, 2014 changes: the following changes were applied in situ.

- The UDS FAST translate file (uds\_3dhst.v4.1.translate) originally corresponded to an older version of the catalog. This file has been updated to the correct v4.1 file. The correct file lists the IRAC filters in capital letters. Redownload the UDS catalog tar ball to update.
- The master catalog FITS file listed all fluxes as integers. This problem was restricted to the FITS file; the ASCII version was not affected. Redownload the master tar ball to update.
- In the master ASCII and FITS catalogs the column "e\_F606W" was erroneously listed as "eF606W". Both the ASCI and FITS files have been corrected. Redownload the master tar ball to update.
- Kernel images were added to the ACS and WFC3 PSF tar balls for GOODS-N, GOODS-S and UDS. Redownload the tar balls.
- Column numbers were added for all catalogs in the README files.

• The last column in all photometric catalogs "nexp\_f160w" was not described in the README files. It has been added in all relevant tables.

THREE

# **3D-HST PHOTOMETRIC CATALOGS**

We present WFC3-selected catalogs of objects from the 3D-HST Survey. Full details of the image processing, matching, and photometry can be found in the catalog release paper by R. E. Skelton et al. (2014). Please cite this paper when using the catalogs or images provided in this 3D-HST release.

Photometric redshifts and rest-frame colors, calculated with the EAZY code (Brammer, van Dokkum, & Coppi 2008; www.astro.yale.edu/eazy/) are provided. We also include stellar population parameters calculated with the FAST code (Kriek et al. 2009; https://www.cfa.harvard.edu/~mkriek/FAST.html).

# 3.1 The Photometric Catalogs

The photometric catalogs are produced using psf-matched aperture photometry for the space-based data and Ivo Labbe's MOPHONGO (Multiresolution Object PHotometry oN Galaxy Observations) software for the ground-based and IRAC data. The detection image for each of the fields is a noise-equalized combination of the F125W, F140W, and F160W images.

A PSF was created for each of the HST images by stacking a number of isolated stars across the image. The HST ACS and WFC3 images were convolved to match the F160W image, which has the broadest PSF. SExtractor (Bertin & Arnouts 1996) was run in dual-image mode using an aperture of 0.7 arcseconds.

Ground-based optical, NIR and IRAC data was processed using the MOPHONGO software, which takes into account large differences in the psfs and the blending of neighboring sources in lower resolution images. A combination of the F125W, F140W psf-matched and F160W original images was used as the high resolution prior. For the ground-based data with good seeing (<0.8"), photometry was performed in an aperture of 1". A 1.2" aperture was used for the bands with seeing 0.8 - 1", a 1.5" aperture for seeing of 1 - 1.2" and a 3" aperture for the IRAC bands. As we use different size apertures, we apply a correction from the aperture used for photometry to the color aperture of 0.7" using the ratio of flux in an aperture of 0.7" to the flux in the larger aperture in the reference band (F160W where available, F140W otherwise). e.g. F160W(0.7")/F160W(X"), where X is the size of the aperture.

All the color measurements are then converted to total fluxes using a correction based on the ratio of the aperture to total flux in the reference image (F160W where available, F140W otherwise). The total flux in reference band is given by the SExtractor AUTO magnitude with a correction to total estimated from the (empirical) growth curve of the F160W PSF. The correction to total is the inverse of the fraction of light enclosed within the circularized Kron radius. The growth curve is normalized at 2 arcseconds.

We apply the Galactic extinction correction given by NED at the center of the field (based on the dust maps from Schlafly & Finkbeiner 2011) to each band.

We calculate the errors for the WFC3/ACS, ground-based images/IRAC, and total error in the detection band as follows:

WFC3/ACS bands: we calculate the errors using the "empty apertures" method. We place many 0.7" apertures at random positions across the image, removing any that overlap with the segmentation map, and fit the distribution

of resulting aperture fluxes to estimate the error for each band. We use the noise-equalized image to determine the error and then weight the error at each object's position based on the weight map (exposure time) at that position. Ground-based images/IRAC: The errors are derived using MOPHONGO. The same scaling from the aperture used for photometry to the color aperture is applied to both the errors and fluxes. Finally, all the flux errors (both ground based, IRAC and HST) are scaled to "total" errors using the same scaling as for the fluxes (f\_F160W/faper\_F160W). Total Flux error for Detection Band (e\_F160W): The total error for F160W is determined differently to the other bands. We run the empty apertures routine in a whole series of apertures that are then fit with a power-law function (Eq. 2 in Skelton et al. 2014). The "total" error can then be read off for each object at the circularized Kron radius, making the "total" error in the detection band typically larger than the color error. Therefore e\_F160W will be determined in a different way than the e\_FILTER for all other bands, which are just scaled color errors. You can also derive the "total color error" for the detection band if you take eaper\_F160W \* (f\_F160W/faper\_F160W).

The equations for all of the above are listed in Skelton et al. (2014) equations 1-3, and Whitaker et al. 2011 equations 5-7, with the difference that we do not include the Poisson noise term here, and that we only use the empty aperture method for the HST bands. Whitaker et al. also provide an equation to determine the full error in the total magnitude for a single band in isolation (including systematics), which would be sqrt(e\_FILTER^2+e\_F160W^2-eaper\_F160W^2). This can be calculated for each band from the given columns as desired.

Adjustments to the zeropoints were calculated iteratively from the difference between the observed and best-fit EAZY template in a similar way to that described in Whitaker et al. 2011. We now use all objects for the fit, rather than just those with spectroscopic redshifts, and it is done in two iterations - in the first round only the HST bands are fitted, to determine any small shifts that should be applied to them. Then the HST bands are fixed and the ground-based and IRAC data is fitted. The F160W band was taken as reference and has an offset of zero in all cases.

All fluxes are converted to total with an aperture correction and normalized to an AB zeropoint of 25, such that:

magAB = -2.5\*log10(flux)+25.0

A standard selection of galaxies can be obtained by selecting use\_phot=1, which is equivalent to nexp\_f160w >2, nexp\_f125w > 2, near\_star = 0 and star flag=0. Also note that an additional S/N cut is optimal, depending on your science goals. This selection can be applied with the use flag provided in the catalogs.

The catalog is available in ascii format (.cat) and fits format (.cat.FITS). The contents of each catalogs for each field are described in their respective sections below.

# 3.2 Photometric Redshift Catalogs

Photometric redshifts were estimated using EAZY (Rev:34, Brammer et al. 2008). These are provided in the field\_3dhst.v4.1.zout and field\_3dhst.v4.1.zout.FITS files. A maximum redshift z=6 is set in the photometric redshift fits.

See the EAZY documentation (http://www.astro.yale.edu/eazy and Brammer, van Dokkum & Coppi 2008) for more information on the EAZY output

The first line of the catalog is a header with all the column names as shown here.

```
# id z_spec z_a z_m1 chi_a z_p chi_p z_m2 odds 168 u68 195 u95 199 u99 nfilt q_z z_peak
peak_prob z_mc
# EAZY $Rev: 34 $
```

Below is a brief summary of the columns of the photo-z catalog.

| Column Name                                         | Column Content                                                                                   |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| 1 # id                                              | Unique identifier within a given field                                                           |  |  |
| 2 # z_spec                                          | Spectroscopic redshift from photometric catalog, if it exists; If no zspec = -1                  |  |  |
| 3 # z_a                                             | Redshift where chi2 is minimized for all template linear combination modes before applying prior |  |  |
| 4 # z_m1                                            | Marginalized Redshift without prior                                                              |  |  |
| 5 # chi_a                                           | Minimum chi squared for all template linear combinations                                         |  |  |
| 6 # z_p                                             | Redshift where likelihood is maximized after applying prior                                      |  |  |
| 7 # chi_p                                           | Original chi squared at z_p                                                                      |  |  |
| 8 # z_m2                                            | Marginalized redshift including prior                                                            |  |  |
| 9 # odds                                            | Redshift quality parameter from Benitez 2000 - fraction of probability within 0.2 of zphot       |  |  |
| 10 # 168 lower limit of 1 sigma confidence interval |                                                                                                  |  |  |
| 11 # u68                                            | upper limit of 1 sigma confidence interval                                                       |  |  |
| 12 # 195                                            | lower limit of 2 sigma confidence interval                                                       |  |  |
| 13 # u95                                            | upper limit of 2 sigma confidence interval                                                       |  |  |
| 14 # 199                                            | lower limit of 3 sigma confidence interval                                                       |  |  |
| 15 # u99                                            | upper limit of 3 sigma confidence interval                                                       |  |  |
| 16 # nfilt                                          | Number of filters used in fit                                                                    |  |  |
| 17 # q_z                                            | Redshift quality parameter; see Brammer et al. 2008                                              |  |  |
| 18 # z_peak                                         | Photometric redshift at peak probability distribution                                            |  |  |
| 19 # peak_prob                                      | Value of peak probability                                                                        |  |  |
| 20 # z_mc                                           | Monte Carlo photometric redshift drawn randomly from probability distribution                    |  |  |

We point out in detail the difference between **z\_peak** and **z\_mc**:

- **z\_peak: Hybrid between z\_p and z\_m2 to address the pathological case where you have two** widely-separated peaks in p(z) that have similar integrated probabilities. \*\* This is the default photometric redshift \*\*
- **z\_mc:** Redshift value drawn randomly from p(z), which has the property that the distribution of these redshifts for a given sample of objects very closely follows the summed p(z) distribution of those same objects.

## 3.3 Rest-Frame Colors

Rest-frame colors were calculated following Brammer et al. (2011). The first line of the catalog is a header with all column names as shown here. The header also lists the central wavelength of each filter:

```
# id z DM L153 n_153 L154 n_154 L155 n_155 L161 n_161 L162 n_162 L163 n_163 L156 n_156
L157 n_157 L158 n_158 L159 n_159 L160 n_160 L135 n_135 L136 n_136 L137 n_137 L138 n_138
L139 n_139 L270 n_270 L271 n_271 L272 n_272 L273 n_273 L274 n_274 L275 n_275
#
# 153: REST_FRAME/maiz-apellaniz_Johnson_U.res,
                                                 3.59854e+03
# 154: REST_FRAME/maiz-apellaniz_Johnson_B.res,
                                                 4.38592e+03
# 155: REST_FRAME/maiz-apellaniz_Johnson_V.res,
                                                 5.49056e+03
# 161: 2MASS/J.res, 1.23751e+04
# 162: 2MASS/H.res, 1.64763e+04
# 163: 2MASS/K.res, 2.16203e+04
# 156: SDSS/u.dat, 3.56179e+03
# 157: SDSS/g.dat,
                   4.71887e+03
# 158: SDSS/r.dat,
                    6.18519e+03
# 159: SDSS/i.dat,
                    7.49966e+03
# 160: SDSS/z.dat,
                    8.96122e+03
# 135: REST_FRAME/Bessel_UX.dat,
                                  3.59291e+03
# 136: REST_FRAME/Bessel_B.dat,
                                 4.38477e+03
# 137: REST_FRAME/Bessel_V.dat, 5.48882e+03
# 138: REST_FRAME/Bessel_R.dat, 6.48893e+03
# 139: REST_FRAME/Bessel_I.dat, 8.03337e+03
```

The filters are numbered in the EAZY format and listed in uds\_3dhst.v4.1.master.RF.

All fluxes are normalized to an AB zeropoint of 25, such that: magAB = 25.0-2.5\*log10(flux).

Rest-frame colors are calculated as  $color = -2.5 \times \log(Lfilter1/Lfilter2)$ 

For each individual field the RF color files field\_3dhst.v4.1.master.RF and field\_3dhst.v4.1.master.RF.FITS have the following columns:

| Column Name                                                    | Column Content                                                                                  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| 1 # id Unique identifier within a given field                  |                                                                                                 |  |
| 2 # z Redshift z_spec if it exists, z_peak from EAZY otherwise |                                                                                                 |  |
| 3 # DM                                                         | Distance modulus for a W_M/W_L/H0 = 0.3/0.7/70 cosmology                                        |  |
| 4 # L153                                                       | Fnu flux density for filter REST_FRAME/maiz-apellaniz_Johnson_U.res with an AB zeropoint of 25  |  |
| 5 # n_153                                                      | Number of filters considered in RF fit for L153                                                 |  |
| 6 # L154                                                       | Fnu flux density for filter REST_FRAME/maiz-apellaniz_Johnson_B.res with an AB zeropoint of 25  |  |
| 7 # n_154                                                      | Number of filters considered in RF fit for L154                                                 |  |
| 8 # L155                                                       | Fnu flux density for filter RREST_FRAME/maiz-apellaniz_Johnson_V.res with an AB zeropoint of 25 |  |
| 9 # n_155                                                      | Number of filters considered in RF fit for L155                                                 |  |
| 10 # L161                                                      | Fnu flux density for filter 2MASS/J.res with an AB zeropoint of 25                              |  |
| 11 # n_161                                                     | Number of filters considered in RF fit for L161                                                 |  |
| 12 # L162                                                      | Fnu flux density for filter 2MASS/H.res with an AB zeropoint of 25                              |  |
| 13 # n_162                                                     | Number of filters considered in RF fit for L162                                                 |  |
| 14 # L163                                                      | Fnu flux density for filter 2MASS/K.res with an AB zeropoint of 25                              |  |
| 15 # n_163                                                     | Number of filters considered in RF fit for L163                                                 |  |
| 16 # L156                                                      | Fnu flux density for filter SDSS/u.dat with an AB zeropoint of 25                               |  |
| 17 # n_156                                                     | Number of filters considered in RF fit for L156                                                 |  |
| 18 # L157                                                      | Fnu flux density for filter SDSS/g.da with an AB zeropoint of 25                                |  |
| 19 # n_157                                                     | Number of filters considered in RF fit for L157                                                 |  |
| 20 # L158                                                      | Fnu flux density for filter SDSS/r.dat with an AB zeropoint of 25                               |  |
| 21 # n_158   Number of filters considered in RF fit for L158   |                                                                                                 |  |
| 22 # L159                                                      | Fnu flux density for filter SDSS/i.dat with an AB zeropoint of 25                               |  |
| 23 # n_159                                                     | Number of filters considered in RF fit for L159                                                 |  |
| 24 # L160                                                      | Fnu flux density for filter SDSS/z.dat with an AB zeropoint of 25                               |  |
| 25 # n_160                                                     | Number of filters considered in RF fit for L160                                                 |  |
| 26 # L135                                                      | Fnu flux density for filter REST_FRAME/Bessel_UX.dat with an AB zeropoint of 25                 |  |
| 27 # n_135                                                     | Number of filters considered in RF fit for L135                                                 |  |
| 28 # L136                                                      | Fnu flux density for filter REST_FRAME/Bessel_B.dat with an AB zeropoint of 25                  |  |
| 29 # n_136                                                     | Number of filters considered in RF fit for L136                                                 |  |
| 30 # L137                                                      | Fnu flux density for filter REST_FRAME/Bessel_V.da with an AB zeropoint of 25                   |  |
| 31 # n_137                                                     | Number of filters considered in RF fit for L137                                                 |  |
| 32 # L138                                                      | Fnu flux density for filter REST_FRAME/Bessel_R.dat with an AB zeropoint of 25                  |  |
| 33 # n_138                                                     | Number of filters considered in RF fit for L138                                                 |  |
| 34 # L139                                                      | Fnu flux density for filter REST_FRAME/Bessel_I.dat with an AB zeropoint of 25                  |  |
|                                                                | Continued on next page                                                                          |  |

| Column Name                                                | Column Content                                                                    |  |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| 35 # n_139                                                 | Number of filters considered in RF fit for L139                                   |  |  |
| 36 # L270                                                  | Fnu flux density for filter RestUV/Tophat_1400_200.dat with an AB zeropoint of 25 |  |  |
| 37 # n_270 Number of filters considered in RF fit for L270 |                                                                                   |  |  |
| 38 # L271                                                  | Fnu flux density for filter RestUV/Tophat_1700_200.dat with an AB zeropoint of 25 |  |  |
| 39 # n_271                                                 | Number of filters considered in RF fit for L271                                   |  |  |
| 40 # L272                                                  | Fnu flux density for filter RestUV/Tophat_2200_200.dat with an AB zeropoint of 25 |  |  |
| 41 # n_272                                                 | Number of filters considered in RF fit for L272                                   |  |  |
| 42 # L273                                                  | Fnu flux density for filter RestUV/Tophat_2700_200.dat with an AB zeropoint of 25 |  |  |
| 43 # n_273                                                 | Number of filters considered in RF fit for L273                                   |  |  |
| 44 # L274                                                  | Fnu flux density for filter RestUV/Tophat_2800_200.dat with an AB zeropoint of 25 |  |  |
| 45 # n_274                                                 | Number of filters considered in RF fit for L274                                   |  |  |
| 46 # L275                                                  | Fnu flux density for filter RestUV/Tophat_5500_200.dat with an AB zeropoint of 25 |  |  |
| 47 # n_275                                                 | Number of filters considered in RF fit for L275                                   |  |  |

 Table 3.1 – continued from previous page

## 3.4 Stellar Population Parameters

We calculated the stellar population parameters using the FAST code version 0.8d. Below is a brief summary of the columns, specifying the default and additional optional settings. For a list of frequently asked questions, please see https://www.cfa.harvard.edu/~mkriek/FAST\_FAQ.html.

We stress that the star formation rates, dust absorption, and star formation histories of the galaxies are uncertain when they are derived solely from optical – near-IR photometry (see, e.g., Wuyts et al. 2012). By contrast, stellar masses and M/L ratios are relatively well-constrained as they mostly depend on the rest-frame optical colors of the galaxies, and these are well-covered by our photometry.

**Default Settings:** 

```
# Template error function: TEMPLATE_ERROR.fast.v0.2
# AB ZP: 25.00
# Library: Bruzual & Charlot (2003)
# SFH: Exponentially declining SFH: SFR ~ exp(-t/tau)
# Stellar IMF: Chabrier
# metallicity: 0.020
# log(tau/yr): 7.0 - 10.0, in steps of 0.20
# log(age/yr): 7.6 - 10.1, in steps of 0.10
# A_V: 0.0 - 4.0, in steps of 0.10
# z: 0.0100 - 4.0000, in steps of 0.0100
```

Additional Settings Available: (settings the same as above unless otherwise noted):

```
# Library: Maraston (2005)
# SFH: Exponentially declining SFH: SFR ~ exp(-t/tau)
# Stellar IMF: Kroupa
# Library: Bruzual & Charlot (2003)
# SFH: Delayed exponential SFH: SFR ~ t exp(-t/tau)
# Stellar IMF: Chabrier
# Library: Maraston (2005)
# SFH: Delayed exponential SFH: SFR ~ t exp(-t/tau)
# Stellar IMF: Kroupa
```

Output from FAST (see Kriek et al. 2009 for details) are provided in the are provided in the field\_3dhst.v4.1.fout and field\_3dhst.v4.1.zout.FITS files.

The header of the .fout file is as follows:

```
#
                                                             lmass
                                                                        lsfr
                                                                                 lssfr
    id
               7.
                      ltau
                               metal
                                          lage
                                                     Av
la2t
         chi2
# FAST version: 0.9b
# Photometric catalog file: uds_3dhst.v4.1.cat
# Photometric redshift file: uds_3dhst.v4.1.zout
# Template error function: TEMPLATE_ERROR.fast.v0.2
               25.00
# AB ZP:
              Bruzual & Charlot (2003)
# Library:
               Exponentially declining SFH: SFR ~ exp(-t/tau)
# SFH:
# Stellar IMF: Chabrier
# metallicity: 0.020
# log(tau/yr): 7.0
                      - 10.0, in steps of 0.20
# log(age/yr): 7.6 - 10.1, in steps of 0.10
# A_V:
               0.0 - 4.0, in steps of 0.10
               0.0100 - 6.0000, in steps of 0.0100
# z:
# Filters: 205 88 122 79 236 123 124 239 125 203 263 204 264 265 18 19 20 21
# ltau: log[tau/yr], lage: log[age/yr], lmass: log[mass/Msol], lsfr: log[sfr/(Msol/yr)],
lssfr: log[ssfr*yr], la2t: log[age/tau]
# For sfr=0. lsfr is set to -99
                                          lage
                                                      Av
#
    id
                      ltau
                               metal
                                                             lmass
                                                                        lsfr
                                                                                 lssfr
               z
la2t
         chi2
```

Below is a brief description of each of the columns:

| Column Name | Column Content                                                                     |  |  |
|-------------|------------------------------------------------------------------------------------|--|--|
| 1 # id      | Unique identifier within a given field                                             |  |  |
| 2 # z       | Redshift used in fit z_spec if exists in input catalog, z_peak from eazy otherwise |  |  |
| 3 # ltau    | logtau/yr                                                                          |  |  |
| 4 # metal   | metallicity                                                                        |  |  |
| 5 # lage    | logage/yr                                                                          |  |  |
| 6 # Av      | Dust attenuation in the V-band                                                     |  |  |
| 7 # lmass   | log Mstar/Msun                                                                     |  |  |
| 8 # 1sfr    | log SFR/Msun/yr                                                                    |  |  |
| 9 # lssfr   | log SSFR * yr                                                                      |  |  |
| 10 # la2t   | log age/tau                                                                        |  |  |
| 11 # chi2   | chi squared of fit                                                                 |  |  |

# 3.5 Individual Fields

Following is information about the photometric catalogs for each individual field and the combined master catalog.

## 3.5.1 AEGIS

RELEASE: V4.1 DATE: MARCH 15TH, 2014 SOURCE: http://3dhst.research.yale.edu

## **Downloads**

CATALOG DOWNLOAD: aegis\_3dhst.v4.1.cats.tar

This file opens into a directory: aegis\_3dhst.v4.1.cats. The following are the contents of this directory:

- Catalog/
  - aegis\_3dhst.v4.1.cat: photometric catalog, ASCII format
  - aegis\_3dhst.v4.1.cat.FITS: photometric catalog, FITS format
- Eazy/
  - aegis\_3dhst.v4.1.coeff:
  - aegis\_3dhst.v4.1.param:
  - aegis\_3dhst.v4.1.pz:
  - aegis\_3dhst.v4.1.readbin.pro
  - aegis\_3dhst.v4.1.temp\_sed
  - aegis\_3dhst.v4.1.tempfilt
  - aegis\_3dhst.v4.1.translate
  - aegis\_3dhst.v4.1.zbin
  - aegis\_3dhst.v4.1.zout: EAZY output file, ASCII format
  - aegis\_3dhst.v4.1.zout.FITS: EAZY output file, FITS format

• Fast/

- aegis\_3dhst.v4.1.fout: FAST output file, ASCII format
- aegis\_3dhst.v4.1.fout.FITS: FAST output file, FITS format
- aegis\_3dhst.v4.1.param: input parameter file for FAST
- aegis\_3dhst.v4.1.translate: filter translate file for FAST
- Restframe/
  - aegis\_3dhst.v4.1.master.RF: rest frame colors, ASCII format
  - aegis\_3dhst.v4.1.master.RF.FITS: rest frame colors, fits format

The contents of each file are explained below.

## **Photometric Catalog**

The detailed methods for creating the catalogs are described in a companion paper - Skelton et al. (2014). The photometric catalog for the aegis field contains the following datasets:

| Bands             | Survey  | Reference                                      |  |
|-------------------|---------|------------------------------------------------|--|
| u,g,r,i,z         | CFHTLS  | Erben et al. (2009), Hildebrandt et al. (2009) |  |
| F606W,F814W       | CANDELS | Grogin et al. 2011, Koekemoer et al. 2011      |  |
| J1,J2,J3, H1,H2,K | NMBS    | Whitaker et al. (2011)                         |  |
| J, H, Ks          | WIRDS   | Bielby et al. (2012)                           |  |
| F140W             | 3D-HST  | Brammer et al. 2012                            |  |
| F125W,F160W       | CANDELS | Grogin et al. 2011, Koekemoer et al. 2011      |  |
| 3.6,4.5um         | SEDS    | Ashby et al. (2013)                            |  |
| 5.8,8.0um         | EGS     | Bramby et al. (2008)                           |  |

The catalog has a single line header with all column names as shown here. The ASCII and the FITS versions of the catalog contain the same columns.

# id x y ra dec faper\_F160W eaper\_F160W faper\_F140W eaper\_F140W f\_F160W e\_F160W w\_F160W f\_U e\_U w\_U f\_G e\_G w\_G f\_F606W e\_F606W w\_F606W f\_R e\_R w\_R f\_I e\_I w\_I f\_F814W e\_F814W w\_F814W f\_Z e\_Z w\_Z f\_F125W e\_F125W w\_F125W f\_J1 e\_J1 w\_J1 f\_J2 e\_J2 w\_J2 f\_J3 e\_J3 w\_J3 f\_J e\_J w\_J f\_F140W e\_F140W w\_F140W f\_H1 e\_H1 w\_H1 f\_H2 e\_H2 w\_H2 f\_H e\_H w\_H f\_K e\_K w\_ K f\_Ks e\_Ks w\_Ks f\_IRAC1 e\_IRAC1 w\_IRAC1 f\_IRAC2 e\_IRAC2 w\_IRAC2 f\_IRAC3 e\_IRAC3 w\_IRAC3 f\_IRAC4 e\_IRAC4 w\_IRAC4 tot\_cor wmin\_ground wmin\_hst wmin\_irac z\_spec star\_flag kron\_radius a\_image b\_image theta\_J2000 class\_star flux\_radius fwhm\_image flags IRAC1\_contam IRAC2\_contam IRAC3\_contam IRAC4\_contam contam\_flag f140w\_flag use\_phot near\_star nexp\_f125w nexp\_f140w nexp\_f160w # aegis\_3dhst.v4.0.cat:

### # by K.E. Whitaker (10/12/2013)

| All fluxes are normalized to an AB zeropoint of 25, such t | that: $magAB = 25.0-2.5*log10(flux)$ |
|------------------------------------------------------------|--------------------------------------|
|------------------------------------------------------------|--------------------------------------|

| Column Name    | Column Content                                                        |
|----------------|-----------------------------------------------------------------------|
| 1 #id          | Unique identifier within a given field                                |
| 2 #x           | X centroid in image coordinates                                       |
| 3 #y           | Y centroid in image coordinates                                       |
| 4 #ra          | RA J2000 degrees                                                      |
| 5 #dec         | Dec J2000 degrees                                                     |
| 6 #faper_F160W | Flux within a 0.7 arcsecond aperture in F160W zeropoint 25.0          |
| 7 #eaper_F160W | 1 sigma error within a 0.7 arcsecond aperture in F160W zeropoint 25.0 |
| 8 #faper_F140W | Flux within a 0.7 arcsecond aperture in F140W zeropoint 25.0          |
| 9 #eaper_F140W | 1 sigma error within a 0.7 arcsecond aperture in F140W zeropoint 25.0 |
| 10 # f_F160W   | Total flux in F160W zeropoint 25                                      |
| 11 # e_F160W   | 1 sigma error in F160W total flux zeropoint 25                        |
| 12 # w_F160W   | Weight relative to 95th percentile within F160W weight map            |
| 13 # f_U       | Total flux in U zeropoint 25                                          |
| 14 # e_U       | 1 sigma error in U total flux zeropoint 25                            |
| 15 # w_U       | Weight relative to 95th percentile within U weight map                |
| 16 # f_G       | Total flux in G zeropoint 25                                          |
| 17 # e_G       | 1 sigma error in G total flux zeropoint 25                            |
| 18 # w_G       | Weight relative to 95th percentile within G weight map                |
| 19 # f_F606W   | Total flux in F606W zeropoint 25                                      |
| 20 # e_F606W   | 1 sigma error in F606W total flux zeropoint 25                        |
| 21 # w_F606W   | Weight relative to 95th percentile within F606W weight map            |
| 22 # f_R       | Total flux in R zeropoint 25                                          |
| 23 # e_R       | 1 sigma error in R total flux zeropoint 25                            |
| 24 # w_R       | Weight relative to 95th percentile within R weight map                |
| 25 # f_I       | Total flux in I zeropoint 25                                          |
| 26 # e_I       | 1 sigma error in I total flux zeropoint 25                            |
| 27 # w_I       | Weight relative to 95th percentile within I weight map                |
| 28 # f_F814W   | Total flux in F814W zeropoint 25                                      |
| 29 # e_F814W   | 1 sigma error in F814W total flux zeropoint 25                        |
| 30 # w_F814W   | Weight relative to 95th percentile within F814W weight map            |
| 31 # f_Z       | Total flux in Z zeropoint 25                                          |
| 32 # e_Z       | 1 sigma error in Z total flux zeropoint 25                            |
| 33 # w_Z       | Weight relative to 95th percentile within Z weight map                |
| 34 # f_F125W   | Total flux in F125W zeropoint 25                                      |
| 35 # e_F125W   | 1 sigma error in F125W total flux zeropoint 25                        |
| 36 # w_F125W   | Weight relative to 95th percentile within F125W weight map            |
| 37 # f_J1      | Total flux in J1zeropoint 25                                          |
|                | Continued on next page                                                |

| Column Name      | Column Content                                                              |  |  |
|------------------|-----------------------------------------------------------------------------|--|--|
| 38 # e_J1        | 1 sigma error in J1 total flux zeropoint 25                                 |  |  |
| 39 # w_J1        | Weight relative to 95th percentile within J1 weight map                     |  |  |
| 40 # f_J2        | Total flux in J2zeropoint 25                                                |  |  |
| 41 # e_J2        | 1 sigma error in J2 total flux zeropoint 25                                 |  |  |
| 42 # w J2        | Weight relative to 95th percentile within J2 weight map                     |  |  |
| 43 # f J3        | Total flux in J3 zeropoint 25                                               |  |  |
| <br>44 # e_J3    | 1 sigma error in J3 total flux zeropoint 25                                 |  |  |
| 45 # w J3        | Weight relative to 95th percentile within J3 weight map                     |  |  |
| 46 # f J         | Total flux in Izeropoint 25                                                 |  |  |
| 47 # e_J         | 1 sigma error in I total flux zeropoint 25                                  |  |  |
| 48 # w I         | Weight relative to 95th percentile within I weight map                      |  |  |
| 49 # f F140W     | Total flux in zeropoint 25                                                  |  |  |
| 50 # e_F140W     | 1 sigma error in total flux zeropoint 25                                    |  |  |
| 51 # w  F140W    | Weight relative to 95th percentile within weight man                        |  |  |
| 52 # f H1        | Total flux in H1 zeropoint 25                                               |  |  |
| 53 # e H1        | 1 sigma error in H1 total flux zeropoint 25                                 |  |  |
| 54 # w U1        | Weight relative to 05th percentile within H1 weight man                     |  |  |
| 55 # f U2        | Total flux in H2goronaint 25                                                |  |  |
| 55 # 1_H2        | 1 sizura armanin 112 tatal flux armanint 25                                 |  |  |
| 50 # e_H2        | 1 sigma error in H2 total nux zeropoint 25                                  |  |  |
| 57 # W_H2        | Track I generative to 95th percentile within H2 weight map                  |  |  |
| <u>58 # f_H</u>  | Iotal flux in H zeropoint 25                                                |  |  |
| <u>59 # e_H</u>  | 1 sigma error in H total flux zeropoint 25                                  |  |  |
| 60 # W_H         | Weight relative to 95th percentile within H weight map                      |  |  |
| 61 # f_K         | Total flux in K zeropoint 25                                                |  |  |
| 62 # e_K         | 1 sigma error in K total flux zeropoint 25                                  |  |  |
| 63 # w_K         | Weight relative to 95th percentile within K weight map                      |  |  |
| 64 # f_Ks        | Total flux in Ks zeropoint 25                                               |  |  |
| 65 # e_Ks        | 1 sigma error in Ks total flux zeropoint 25                                 |  |  |
| 66 # w_Ks        | Weight relative to 95th percentile within Ks weight map                     |  |  |
| 67 # f_IRAC1     | Total flux in IRAC1 zeropoint 25                                            |  |  |
| 68 # e_IRAC1     | 1 sigma error in IRAC1 total flux zeropoint 25                              |  |  |
| 69 # w_IRAC1     | Weight relative to 95th percentile within IRAC1 weight map                  |  |  |
| 70 # f_IRAC2     | Total flux in IRAC2 zeropoint 25                                            |  |  |
| 71 # e_IRAC2     | 1 sigma error in IRAC2 total flux zeropoint 25                              |  |  |
| 72 # w_IRAC2     | Weight relative to 95th percentile within IRAC2 weight map                  |  |  |
| 73 # f_IRAC3     | Total flux in IRAC3 zeropoint 25                                            |  |  |
| 74 # e_IRAC3     | 1 sigma error in IRAC3 total flux zeropoint 25                              |  |  |
| 75 # w_IRAC3     | Weight relative to 95th percentile within IRAC3 weight map                  |  |  |
| 76 # f_IRAC4     | Total flux in IRAC4 zeropoint 25                                            |  |  |
| 77 # e_IRAC4     | 1 sigma error in IRAC4 total flux zeropoint 25                              |  |  |
| 78 # w_IRAC4     | Weight relative to 95th percentile within IRAC4 weight map                  |  |  |
| 79 # tot_cor     | Correction from AUTO to total flux based on F160W F140W                     |  |  |
| 80 # wmin_ground | Minimum weight for all ground-based photometry                              |  |  |
| 81 # wmin_hst    | Minimum weight for ACS/WFC3 bands excluding no coverage                     |  |  |
| 82 # wmin_irac   | Minimum weight for IRAC bands excluding no coverage                         |  |  |
| 83 # wmin_wfc3   | Minimum weight for F160W, F125W and F140W excluding no coverage             |  |  |
| 84 # z spec      | Spectroscopic redshift, when available see Skelton et al., 2014 for sources |  |  |
| 85 # star flag   | For F160W<25, star=1 and galaxy=0: for F160W>25. flag=2                     |  |  |
| 86 # kron radius | KRON RADIUS                                                                 |  |  |
|                  | Continued on next page                                                      |  |  |

| Column Name                                                             | Column Content                                                            |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| 87 # a_image                                                            | A_IMAGE semi-major axis, pixels                                           |  |  |
| 88 # b_image                                                            | B_IMAGE semi-minor axis, pixels                                           |  |  |
| 89 # theta_J2000                                                        | Position angle of the major axis counter-clockwise, 0.0 = X world axis    |  |  |
| 90 # class_star                                                         | Sextractor stellarity-index CLASS_STAR                                    |  |  |
| 91 # flux_radius Circular aperture radius enclosing half the total flux |                                                                           |  |  |
| 92 # fwhm_image                                                         | FWHM pixels from a gaussian fit to the core                               |  |  |
| 93 # flags                                                              | SExtractor extraction flags measured                                      |  |  |
| 94 # IRAC1_contam                                                       | Ratio of contaminating flux from neighbors to the object's flux IRAC CH1  |  |  |
| 95 # IRAC2_contam                                                       | Ratio of contaminating flux from neighbors to the object's flux IRAC CH2  |  |  |
| 96 # IRAC3_contam                                                       | Ratio of contaminating flux from neighbors to the object's flux IRAC CH3  |  |  |
| 97 # IRAC4_contam                                                       | Ratio of contaminating flux from neighbors to the object's flux IRAC CH4  |  |  |
| 98 # contam_flag                                                        | A flag for IRAC phot contam ratio >50% all bands . 0=OK, 1=bad            |  |  |
| 99 # f140w_flag                                                         | Set if F140W is used for the corrections to total i.e., no F160W coverage |  |  |
| 100 # use_phot                                                          | Use flag: 1=USE, 0=DON'T USE; see Skelton et al. 2014 for definition      |  |  |
| 101 # near_star                                                         | 1=Close to a star                                                         |  |  |
| 102 # nexp_f125w                                                        | Number of individual exposures in F125W, based on NEXP maps               |  |  |
| 103 # nexp_f140w                                                        | Number of individual exposures in F140W, based on NEXP maps               |  |  |
| 104 # nexp_f160w                                                        | Number of individual exposures in F160W, based on NEXP maps               |  |  |

### Table 3.2 – continued from previous page

## 3.5.2 COSMOS

RELEASE: V4.1

DATE: MARCH 15TH, 2014

SOURCE: http://3dhst.research.yale.edu

## **Downloads**

CATALOG DOWNLOAD: cosmos\_3dhst.v4.1.cats.tar

This file opens into a directory: cosmos\_3dhst.v4.1.cats. The following are the contents of this directory:

- Catalog/
  - cosmos\_3dhst.v4.1.cat: photometric catalog, ASCII format
  - cosmos\_3dhst.v4.1.cat.FITS: photometric catalog, FITS format
- Eazy/
  - cosmos\_3dhst.v4.1.coeff:
  - cosmos\_3dhst.v4.1.param:
  - cosmos\_3dhst.v4.1.pz:
  - cosmos\_3dhst.v4.1.readbin.pro
  - cosmos\_3dhst.v4.1.temp\_sed
  - cosmos\_3dhst.v4.1.tempfilt
  - cosmos\_3dhst.v4.1.translate
  - cosmos\_3dhst.v4.1.zbin

- cosmos\_3dhst.v4.1.zout: EAZY output file, ASCII format
- cosmos\_3dhst.v4.1.zout.FITS: EAZY output file, FITS format
- Fast/
  - cosmos\_3dhst.v4.1.fout: FAST output file, ASCII format
  - cosmos\_3dhst.v4.1.fout.FITS: FAST output file, FITS format
  - cosmos\_3dhst.v4.1.param: input parameter file for FAST
  - cosmos\_3dhst.v4.1.translate: filter translate file for FAST
- Restframe/
  - cosmos\_3dhst.v4.1.master.RF: rest frame colors, ASCII format
  - cosmos\_3dhst.v4.1.master.RF.FITS: rest frame colors, fits format

The contents of the photometric catalogs are explained below. The EAZY and FAST outputs as well as the rest-frame colors are described in their respective sections above.

### **Photometric Catalog**

The detailed methods for creating the catalogs are described in a companion paper - Skelton et al. (2014). The photometric catalog for the COSMOS field contains the following datasets:

| Bands                             | Survey     | Reference                                     |
|-----------------------------------|------------|-----------------------------------------------|
| u,g,r,i,z                         | CFHTLS     | Erben et al. (2009) Hildebrandt et al. (2009) |
| Bj, Vj, r+,i+,z+, 12 medium bands |            | Taniguchi et al. (2007)                       |
| F606W,F814W                       | CANDELS    | Grogin et al. 2011, Koekemoer et al. 2011     |
| J1,J2,J3 H1,H2,K                  | NMBS       | Whitaker et al. (2011)                        |
| J, H, Ks                          | UltraVISTA | McCracken et al. (2012)                       |
| Y, J, H, Ks                       | WIRDS      | Bielby et al. (2012)                          |
| F140W                             | 3D-HST     | Brammer et al. 2012                           |
| F125W,F160W                       | CANDELS    | Grogin et al. 2011, Koekemoer et al. 2011     |
| 3.6,4.5um                         | SEDS       | Ashby et al. (2013)                           |
| 5.8,8.0um                         | EGS        | Bramby et al. (2008)                          |

The catalog has a single line header with all column names as shown here. The ASCII and the FITS versions of the catalog contain the same columns.:

```
# id x y ra dec faper_F160W eaper_F160W faper_F140W eaper_F140W f_F160W e_F160W w_F160W f_U
e_U w_U f_B e_B w_B f_G e_G w_G f_V e_V w_V f_F606W e_F606W w_F606W f_R e_R w_R f_Rp e_Rp w_Rp
f_I e_I w_I f_Ip e_Ip w_Ip f_F814W e_F814W w_F814W f_Z e_Z w_Z f_Zp e_Zp w_Zp
f_UVISTA_Y e_UVISTA_Y w_UVISTA_Y f_F125W e_F125W w_F125W f_J1 e_J1 w_J1 f_J2 e_J2 w_J2
f_J3 e_J3 w_J3 f_J e_J w_J f_UVISTA_J e_UVISTA_J w_UVISTA_J f_F140W e_F140W w_F140W
f_H1 e_H1 w_H1 f_H2 e_H2 w_H2 f_H e_H w_H f_UVISTA_H e_UVISTA_H w_UVISTA_H f_K e_K w_K
f_Ks e_Ks w_Ks f_UVISTA_Ks e_UVISTA_Ks w_UVISTA_Ks f_IRAC1 e_IRAC1 w_IRAC1 f_IRAC2 e_IRAC2 w_IRAC2
f_IRAC3 e_IRAC3 w_IRAC3 f_IRAC4 e_IRAC4 w_IRAC4 f_IA427 e_IA427 f_IA464 e_IA464 f_IA484 e_IA484
f_IA505 e_IA505 f_IA527 e_IA527 f_IA574 e_IA574 f_IA624 e_IA624 f_IA679 e_IA679 f_IA709 e_IA709
f_IA738 e_IA738 f_IA767 e_IA767 f_IA827 e_IA827 tot_cor wmin_ground wmin_hst wmin_irac wmin_wfc3
z_spec star_f1ag kron_radius a_image b_image theta_J2000 class_star flux_radius fwhm_image flags
IRAC1_contam IRAC2_contam IRAC3_contam IRAC4_contam contam_f1ag f140w_f1ag use_phot near_star
nexp_f125w nexp_f140w nexp_f160w
# cosmos_3dhst.v4.1.cat:
# by K.E. Whitaker (3/11/2014)
```

All fluxes are normalized to an AB zeropoint of 25, such that: magAB = 25.0-2.5\*log10(flux)

| Column Name    | Column Content                                                        |  |
|----------------|-----------------------------------------------------------------------|--|
| 1 #id          | Unique identifier within a given field                                |  |
| 2 #x           | X centroid in image coordinates                                       |  |
| 3 #y           | Y centroid in image coordinates                                       |  |
| 4 #ra          | RA J2000 degrees                                                      |  |
| 5 #dec         | Dec J2000 degrees                                                     |  |
| 6 #faper_F160W | Flux within a 0.7 arcsecond aperture in F160W zeropoint 25.0          |  |
| 7 #eaper_F160W | 1 sigma error within a 0.7 arcsecond aperture in F160W zeropoint 25.0 |  |
| 8 #faper_F140W | Flux within a 0.7 arcsecond aperture in F140W zeropoint 25.0          |  |
| 9 #eaper_F140W | 1 sigma error within a 0.7 arcsecond aperture in F140W zeropoint 25.0 |  |
| 10 #f_F160W    | Total flux in F160W zeropoint 25                                      |  |
| 11 #e_F160W    | 1 sigma error in F160W total flux zeropoint 25                        |  |
| 12 #w_F160W    | Weight relative to 95th percentile within F160W weight map            |  |
| 13 #f_U        | Total flux in U zeropoint 25                                          |  |
| 14 #e_U        | 1 sigma error in U total flux zeropoint 25                            |  |
| 15 #w_U        | Weight relative to 95th percentile within U weight map                |  |
| 16 #f_B        | Total flux in B zeropoint 25                                          |  |
| 17 #e_B        | 1 sigma error in B total flux zeropoint 25                            |  |
| 18 #w_B        | Weight relative to 95th percentile within B weight map                |  |
| 19 #f_G        | Total flux in G zeropoint 25                                          |  |
| 20 #e_G        | 1 sigma error in G total flux zeropoint 25                            |  |
| 21 #w_G        | Weight relative to 95th percentile within G weight map                |  |
| 22 #f_V        | Total flux in V zeropoint 25                                          |  |
| 23 #e_V        | 1 sigma error in V total flux zeropoint 25                            |  |
| 24 #w_V        | Weight relative to 95th percentile within V weight map                |  |
| 25 #f_F606W    | Total flux in F606W zeropoint 25                                      |  |
| 26 #e_F606W    | 1 sigma error in F606W total flux zeropoint 25                        |  |
| 27 #w_F606W    | Weight relative to 95th percentile within F606W weight map            |  |
| 28 #f_R        | Total flux in R zeropoint 25                                          |  |
| 29 #e_R        | 1 sigma error in R total flux zeropoint 25                            |  |
| 30 #w_R        | Weight relative to 95th percentile within R weight map                |  |
| 31 #f_Rp       | Total flux in Rpzeropoint 25                                          |  |
| 32 #e_Rp       | 1 sigma error in Rp total flux zeropoint 25                           |  |
| 33 #w_Rp       | Weight relative to 95th percentile within Rp weight map               |  |
| 34 #f_I        | Total flux in I zeropoint 25                                          |  |
| 35 #e_I        | 1 sigma error in I total flux zeropoint 25                            |  |
| 36 #w_I        | Weight relative to 95th percentile within I weight map                |  |
| 37 #f_Ip       | Total flux in Ip zeropoint 25                                         |  |
| 38 #e_Ip       | 1 sigma error in Ip total flux zeropoint 25                           |  |
| 39 #w_Ip       | Weight relative to 95th percentile within Ip weight map               |  |
| 40 #f_F814W    | Total flux in F814W zeropoint 25                                      |  |
| 41 #e_F814W    | 1 sigma error in F814W total flux zeropoint 25                        |  |
| 42 #w_F814W    | Weight relative to 95th percentile within F814W weight map            |  |
| 43 #f_Z        | Total flux in Z zeropoint 25                                          |  |
| 44 #e_Z        | 1 sigma error in Z total flux zeropoint 25                            |  |
| 45 #w_Z        | Weight relative to 95th percentile within Z weight map                |  |
| 46 #f_Zp       | Total flux in Zp zeropoint 25                                         |  |
| 47 #e_Zp       | 1 sigma error in Zp total flux zeropoint 25                           |  |
| 48 #w_Zp       | Weight relative to 95th percentile within Zp weight map               |  |
| 49 #f_UVISTA_Y | Total flux in UVISTA_Y zeropoint 25                                   |  |
| 50 #e_UVISTA_Y | 1 sigma error in UVISTA_Y total flux zeropoint 25                     |  |
|                | Continued on next page                                                |  |

| Column Name     | Column Content                                                 |  |
|-----------------|----------------------------------------------------------------|--|
| 51 #w_UVISTA_Y  | Weight relative to 95th percentile within UVISTA_Y weight map  |  |
| 52 #f_F125W     | Total flux in F125W zeropoint 25                               |  |
| 53 #e_F125W     | 1 sigma error in F125W total flux zeropoint 25                 |  |
| 54 #w_F125W     | Weight relative to 95th percentile within F125W weight map     |  |
| 55 #f_J1        | Total flux in J1zeropoint 25                                   |  |
| 56 #e_J1        | 1 sigma error in J1 total flux zeropoint 25                    |  |
| 57 #w_J1        | Weight relative to 95th percentile within J1 weight map        |  |
| 58 #f_J2        | Total flux in J2zeropoint 25                                   |  |
| 59 #e_J2        | 1 sigma error in J2 total flux zeropoint 25                    |  |
| 60 #w J2        | Weight relative to 95th percentile within J2 weight map        |  |
|                 | Total flux in J3 zeropoint 25                                  |  |
| 62 #e_J3        | 1 sigma error in J3 total flux zeropoint 25                    |  |
|                 | Weight relative to 95th percentile within J3 weight map        |  |
|                 | Total flux in Jzeropoint 25                                    |  |
| 65 #e J         | 1 sigma error in J total flux zeropoint 25                     |  |
| <br>66 #w_ J    | Weight relative to 95th percentile within J weight map         |  |
| 67 #f UVISTA J  | Total flux in UVISTA J zeropoint 25                            |  |
| 68 #e UVISTA J  | 1 sigma error in UVISTA J total flux zeropoint 25              |  |
| 69 #w UVISTA J  | Weight relative to 95th percentile within UVISTA J weight map  |  |
| 70 #f F140W     | Total flux in zeropoint 25                                     |  |
| 71 #e F140W     | 1 sigma error in total flux zeropoint 25                       |  |
| 72 #w F140W     | Weight relative to 95th percentile within weight map           |  |
| 73 #f H1        | Total flux in H1 zeropoint 25                                  |  |
| 74 #e H1        | 1 sigma error in H1 total flux zeropoint 25                    |  |
| 75 #w H1        | Weight relative to 95th percentile within H1 weight map        |  |
| <br>76 #f_H2    | Total flux in H2zeropoint 25                                   |  |
| 77 #e H2        | 1 sigma error in H2 total flux zeropoint 25                    |  |
| 78 #w_H2        | Weight relative to 95th percentile within H2 weight map        |  |
| 79 #f_H         | Total flux in H zeropoint 25                                   |  |
| 80 #e_H         | 1 sigma error in H total flux zeropoint 25                     |  |
| 81 #w_H         | Weight relative to 95th percentile within H weight map         |  |
| 82 #f_UVISTA_H  | Total flux in UVISTA_H zeropoint 25                            |  |
| 83 #e_UVISTA_H  | 1 sigma error in UVISTA_H total flux zeropoint 25              |  |
| 84 #w_UVISTA_H  | Weight relative to 95th percentile within UVISTA_H weight map  |  |
| 85 #f_K         | Total flux in K zeropoint 25                                   |  |
| 86 #e_K         | 1 sigma error in K total flux zeropoint 25                     |  |
| 87 #w_K         | Weight relative to 95th percentile within K weight map         |  |
| 88 #f_Ks        | Total flux in Ks zeropoint 25                                  |  |
| 89 #e_Ks        | 1 sigma error in Ks total flux zeropoint 25                    |  |
| 90 #w_Ks        | Weight relative to 95th percentile within Ks weight map        |  |
| 91 #f_UVISTA_Ks | Total flux in UVISTA_Ks zeropoint 25                           |  |
| 92 #e_UVISTA_Ks | 1 sigma error in UVISTA_Ks total flux zeropoint 25             |  |
| 93 #w_UVISTA_Ks | Weight relative to 95th percentile within UVISTA_Ks weight map |  |
| 94 #f_IRAC1     | Total flux in IRAC1 zeropoint 25                               |  |
| 95 #e_IRAC1     | 1 sigma error in IRAC1 total flux zeropoint 25                 |  |
| 96 #w_IRAC1     | Weight relative to 95th percentile within IRAC1 weight map     |  |
| 97 #f_IRAC2     | Total flux in IRAC2 zeropoint 25                               |  |
| 98 #e_IRAC2     | 1 sigma error in IRAC2 total flux zeropoint 25                 |  |
| 99 #w_IRAC2     | Weight relative to 95th percentile within IRAC2 weight map     |  |
|                 | Continued on next page                                         |  |

 Table 3.3 – continued from previous page

| Column Name       | Column Content                                                              |
|-------------------|-----------------------------------------------------------------------------|
| 100 #f_IRAC3      | Total flux in IRAC3 zeropoint 25                                            |
| 101 #e_IRAC3      | 1 sigma error in IRAC3 total flux zeropoint 25                              |
| 102 #w_IRAC3      | Weight relative to 95th percentile within IRAC3 weight map                  |
| 103 #f IRAC4      | Total flux in IRAC4 zeropoint 25                                            |
| 104 #e_IRAC4      | 1 sigma error in IRAC4 total flux zeropoint 25                              |
| 105 #w IRAC4      | Weight relative to 95th percentile within IRAC4 weight map                  |
| 106 #f IA427      | Total flux in zeropoint 25                                                  |
| 107 #e_IA427      | 1 sigma error in total flux zeropoint 25                                    |
|                   | Total flux in zeropoint 25                                                  |
|                   | 1 sigma error in total flux zeropoint 25                                    |
| 110 #f IA484      | Total flux in zeropoint 25                                                  |
| 111 #e IA484      | 1 sigma error in total flux zeropoint 25                                    |
| 112 #f IA505      | Total flux in zeropoint 25                                                  |
| 113 #e IA505      | 1 sigma error in total flux zeropoint 25                                    |
|                   | Total flux in zeropoint 25                                                  |
| 115 #e IA527      | 1 sigma error in total flux zeropoint 25                                    |
| 116 #f IA574      | Total flux in zeropoint 25                                                  |
|                   | 1 sigma error in total flux zeropoint 25                                    |
|                   | Total flux in zeropoint 25                                                  |
| 119 #e_IA624      | 1 sigma error in total flux zeropoint 25                                    |
|                   | Total flux in zeropoint 25                                                  |
|                   | 1 sigma error in total flux zeropoint 25                                    |
|                   | Total flux in zeropoint 25                                                  |
| 123 #e IA709      | 1 sigma error in total flux zeropoint 25                                    |
|                   | Total flux in zeropoint 25                                                  |
| 125 #e_IA738      | 1 sigma error in total flux zeropoint 25                                    |
| <br>126 #f_IA767  | Total flux in zeropoint 25                                                  |
| 127 #e_IA767      | 1 sigma error in total flux zeropoint 25                                    |
| 128 #f_IA827      | Total flux in zeropoint 25                                                  |
| 129 #e_IA827      | 1 sigma error in total flux zeropoint 25                                    |
| 130 #tot_cor      | Correction from AUTO to total flux based on F160W F140W                     |
| 131 #wmin_ground  | Minimum weight for all ground-based photometry                              |
| 132 #wmin_hst     | Minimum weight for ACS/WFC3 bands excluding no coverage                     |
| 133 #wmin_irac    | Minimum weight for IRAC bands excluding no coverage                         |
| 134 #wmin_wfc3    | Minimum weight for F160W, F125W and F140W excluding no coverage             |
| 135 #z_spec       | Spectroscopic redshift, when available see Skelton et al., 2014 for sources |
| 136 #star_flag    | For F160W<25, star=1 and galaxy=0; for F160W>25, flag=2                     |
| 137 #kron_radius  | KRON_RADIUS                                                                 |
| 138 #a_image      | A_IMAGE semi-major axis, pixels                                             |
| 139 #b_image      | B_IMAGE semi-minor axis, pixels                                             |
| 140 #theta_J2000  | Position angle of the major axis counter-clockwise, $0.0 = X$ world axis    |
| 141 #class_star   | Sextractor stellarity-index CLASS_STAR                                      |
| 142 #flux_radius  | Circular aperture radius enclosing half the total flux                      |
| 143 #fwhm_image   | FWHM pixels from a gaussian fit to the core                                 |
| 144 #flags        | SExtractor extraction flags measured                                        |
| 145 #IRAC1_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH1    |
| 146 #IRAC2_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH2    |
| 147 #IRAC3_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH3    |
| 148 #IRAC4_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH4    |
|                   | Continued on next page                                                      |

Table 3.3 – continued from previous page

| Column Name      | Column Content                                                            |
|------------------|---------------------------------------------------------------------------|
| 149 #contam_flag | A flag for IRAC phot contam ratio >50% all bands . 0=OK, 1=bad            |
| 150 #f140w_flag  | Set if F140W is used for the corrections to total i.e., no F160W coverage |
| 151 #use_phot    | Use flag: 1=USE, 0=DON'T USE; see Skelton et al. 2014 for definition      |
| 152 #near_star   | 1=Close to a star                                                         |
| 153 #nexp_f125w  | Number of individual exposures in F125W, based on NEXP maps               |
| 154 #nexp_f140w  | Number of individual exposures in F140W, based on NEXP maps               |
| 155 #nexp_f160w  | Number of individual exposures in F160W, based on NEXP maps               |

#### Table 3.3 – continued from previous page

## 3.5.3 GOODS-N

RELEASE: V4.1

DATE: MARCH 15TH, 2014

SOURCE: http://3dhst.research.yale.edu

## **Downloads**

### CATALOG DOWNLOAD: goodsn\_3dhst.v4.1.cats.tar

This file opens into a directory: goodsn\_3dhst.v4.1.cats. The following are the contents of this directory:

- Catalog/
  - goodsn\_3dhst.v4.1.cat: photometric catalog, ASCII format
  - goodsn\_3dhst.v4.1.cat.FITS: photometric catalog, FITS format
- Eazy/
  - goodsn\_3dhst.v4.1.coeff:
  - goodsn\_3dhst.v4.1.param:
  - goodsn\_3dhst.v4.1.pz:
  - goodsn\_3dhst.v4.1.readbin.pro
  - goodsn\_3dhst.v4.1.temp\_sed
  - goodsn\_3dhst.v4.1.tempfilt
  - goodsn\_3dhst.v4.1.translate
  - goodsn\_3dhst.v4.1.zbin
  - goodsn\_3dhst.v4.1.zout: EAZY output file, ASCII format
  - goodsn\_3dhst.v4.1.zout.FITS: EAZY output file, FITS format

• Fast/

- goodsn\_3dhst.v4.1.fout: FAST output file, ASCII format
- goodsn\_3dhst.v4.1.fout.FITS: FAST output file, FITS format
- goodsn\_3dhst.v4.1.param: input parameter file for FAST
- goodsn\_3dhst.v4.1.translate: filter translate file for FAST
- Restframe/

- goodsn\_3dhst.v4.1.master.RF: rest frame colors, ASCII format
- goodsn\_3dhst.v4.1.master.RF.FITS: rest frame colors, fits format

The contents of each file are explained below.

### **Photometric Catalog**

The detailed methods for creating the catalogs are described in a companion paper - Skelton et al. (2014).

The photometric catalog for the goodsn field contains the following datasets:

| Bands                       | Survey  | Reference                                 |
|-----------------------------|---------|-------------------------------------------|
| U                           | HHDFN   | Capak et al. 2004                         |
| G, Rs                       | Keck    | Steidel et al. 2003                       |
| F435W, F606W, F775W, F850LP | GOODS   | Giavalisco et al. 2004                    |
| B, V, R, i, z               | HHDFN   | Capak et al. 2004                         |
| F140W                       | 3D-HST  | Brammer et al. 2012                       |
| F125W,F160W                 | CANDELS | Grogin et al. 2011, Koekemoer et al. 2011 |
| J, H, Ks                    | MODS    | Kajisawa et al. 2011                      |
| 3.6,4.5um                   | SEDS    | Ashby et al. (2013)                       |
| 5.8,8.0um                   | GOODS   | Dickinson et al. 2003                     |

The catalog has a single line header with all column names as shown here. The ASCII and the

FITS versions of the catalog contain the same columns.

# id x y ra dec faper\_F160W eaper\_F160W faper\_F140W eaper\_F140W f\_F160W e\_F160W w\_F160W f\_U e\_U w\_U f\_F435W e\_F435W w\_F435W f\_B e\_B w\_B f\_G e\_G w\_G f\_V e\_V w\_V f\_F606W e\_F606W w\_F606W f\_R e\_R w\_R f\_Rs e\_Rs w\_Rs f\_I e\_I w\_I f\_F775W e\_F775W w\_F775W f\_Z e\_Z w\_Z f\_F850LP e\_F850LP w\_F850LP f\_F125W e\_F125W w\_F125W f\_J e\_J w\_J f\_F140W e\_F140W w\_F140W f\_H e\_H w\_H f\_Ks e\_Ks w\_Ks f\_IRAC1 e\_IRAC1 w\_IRAC1 f\_IRAC2 e\_IRAC2 w\_IRAC2 f\_IRAC3 e\_IRAC3 w\_IRAC3 f\_IRAC4 e\_IRAC4 w\_IRAC4 tot\_cor wmin\_ground wmin\_hst wmin\_wfc3 wmin\_irac z\_spec star\_flag kron\_radius a\_image b\_image theta\_J2000 class\_star flux\_radius fwhm\_image flags IRAC1\_contam IRAC2\_contam IRAC3\_contam IRAC4\_contam contam\_flag f140w\_flag use\_phot near\_star nexp\_f125w nexp\_f140w nexp\_f160w # goodsn\_3dhst.v4.1.cat: # by R.E. Skelton (2014/03/11)

All fluxes are normalized to an AB zeropoint of 25, such that: magAB = 25.0-2.5\*log10(flux).

| Column Name     | Column Content                                                        |
|-----------------|-----------------------------------------------------------------------|
| 1 # id          | Unique identifier within a given field                                |
| 2 # x           | X centroid in image coordinates                                       |
| 3 # y           | Y centroid in image coordinates                                       |
| 4 # ra          | RA J2000 degrees                                                      |
| 5 # dec         | Dec J2000 degrees                                                     |
| 6 # faper_F160W | Flux within a 0.7 arcsecond aperture in F160W zeropoint 25.0          |
| 7 # eaper_F160W | 1 sigma error within a 0.7 arcsecond aperture in F160W zeropoint 25.0 |
| 8 # faper_F140W | Flux within a 0.7 arcsecond aperture in F140W zeropoint 25.0          |
| 9 # eaper_F140W | 1 sigma error within a 0.7 arcsecond aperture in F140W zeropoint 25.0 |
| 10 # f_F160W    | Total flux in F160W zeropoint 25                                      |
| 11 # e_F160W    | 1 sigma error in F160W total flux zeropoint 25                        |
| 12 # w_F160W    | Weight relative to 95th percentile within F160W weight map            |
| 13 # f_U        | Total flux in U zeropoint 25                                          |
| 14 # e_U        | 1 sigma error in U total flux zeropoint 25                            |
|                 | Continued on next page                                                |

| Column Name   | Column Content                                                    |  |
|---------------|-------------------------------------------------------------------|--|
| 15 # w_U      | Weight relative to 95th percentile within U weight map            |  |
| 16 # f_F435W  | Total flux in ACS F435W zeropoint 25                              |  |
| 17 # e_F435W  | 1 sigma error in ACS F435W total flux zeropoint 25                |  |
| 18 # w_F435W  | Weight relative to 95th percentile within F435W weight map        |  |
| 19 # f_B      | Total flux in B zeropoint 25                                      |  |
| 20 # e_B      | 1 sigma error in B total flux zeropoint 25                        |  |
| 21 # w_B      | Weight relative to 95th percentile within B weight map            |  |
| 22 # f_G      | Total flux in G zeropoint 25                                      |  |
| 23 # e_G      | 1 sigma error in G total flux zeropoint 25                        |  |
| 24 # w_G      | Weight relative to 95th percentile within G weight map            |  |
| 25 # f_V      | Total flux in V zeropoint 25                                      |  |
| 26 # e_V      | 1 sigma error in V total flux zeropoint 25                        |  |
| 27 # w_V      | Weight relative to 95th percentile within V weight map            |  |
| 28 # f_F606W  | Total flux in F606W GOODS zeropoint 25                            |  |
| 29 # e_F606W  | 1 sigma error in F606W GOODS total flux zeropoint 25              |  |
| 30 # w_F606W  | Weight relative to 95th percentile within F606W GOODS weight map  |  |
| 31 # f_R      | Total flux in R zeropoint 25                                      |  |
| 32 # e_R      | 1 sigma error in R total flux zeropoint 25                        |  |
| 33 # w R      | Weight relative to 95th percentile within R weight map            |  |
| 34 # f Rs     | Total flux in Rc zeropoint 25                                     |  |
| 35 # e_Rs     | 1 sigma error in Rc total flux zeropoint 25                       |  |
| 36 # w_Rs     | Weight relative to 95th percentile within Rc weight map           |  |
| 37 # f_I      | Total flux in I zeropoint 25                                      |  |
| 38 # e_I      | 1 sigma error in I total flux zeropoint 25                        |  |
| 39 # w_I      | Weight relative to 95th percentile within I weight map            |  |
|               | Total flux in F775W GOODS zeropoint 25                            |  |
| 41 # e_F775W  | 1 sigma error in F775W GOODS total flux zeropoint 25              |  |
| 42 # w_F775W  | Weight relative to 95th percentile within F775W GOODS weight map  |  |
| 43 # f_Z      | Total flux in Z zeropoint 25                                      |  |
| 44 # e_Z      | 1 sigma error in Z total flux zeropoint 25                        |  |
| 45 # w_Z      | Weight relative to 95th percentile within Z weight map            |  |
| 46 # f_F850LP | Total flux in F850LP GOODS zeropoint 25                           |  |
| 47 # e_F850LP | 1 sigma error in F850LP GOODS total flux zeropoint 25             |  |
| 48 # w_F850LP | Weight relative to 95th percentile within F850LP GOODS weight map |  |
| 49 # f_F125W  | Total flux in F125W zeropoint 25                                  |  |
| 50 # e_F125W  | 1 sigma error in F125W total flux zeropoint 25                    |  |
| 51 # w_F125W  | Weight relative to 95th percentile within F125W weight map        |  |
| 52 # f_J      | Total flux in Jzeropoint 25                                       |  |
| 53 # e_J      | 1 sigma error in J total flux zeropoint 25                        |  |
| 54 # w_J      | Weight relative to 95th percentile within J weight map            |  |
| 55 # f_F140W  | Total flux in zeropoint 25                                        |  |
| 56 # e_F140W  | 1 sigma error in total flux zeropoint 25                          |  |
| 57 # w_F140W  | Weight relative to 95th percentile within weight map              |  |
| 58 # f_H      | Total flux in H zeropoint 25                                      |  |
| 59 # e_H      | 1 sigma error in H total flux zeropoint 25                        |  |
| 60 # w_H      | Weight relative to 95th percentile within H weight map            |  |
| 61 # f_Ks     | Total flux in K zeropoint 25                                      |  |
| 62 # e_Ks     | 1 sigma error in K total flux zeropoint 25                        |  |
| 63 # w_Ks     | Weight relative to 95th percentile within K weight map            |  |
|               | Continued on next page                                            |  |

| Table 3.4 – continued from | 1 previous page |
|----------------------------|-----------------|
|----------------------------|-----------------|

| Column Name       | Column Content                                                              |
|-------------------|-----------------------------------------------------------------------------|
| 64 # f_IRAC1      | Total flux in IRAC1 zeropoint 25                                            |
| 65 # e_IRAC1      | 1 sigma error in IRAC1 total flux zeropoint 25                              |
| 66 # w_IRAC1      | Weight relative to 95th percentile within IRAC1 weight map                  |
| 67 # f_IRAC2      | Total flux in IRAC2 zeropoint 25                                            |
| 68 # e_IRAC2      | 1 sigma error in IRAC2 total flux zeropoint 25                              |
| 69 # w_IRAC2      | Weight relative to 95th percentile within IRAC2 weight map                  |
| 70 # f_IRAC3      | Total flux in IRAC3 zeropoint 25                                            |
| 71 # e_IRAC3      | 1 sigma error in IRAC3 total flux zeropoint 25                              |
| 72 # w_IRAC3      | Weight relative to 95th percentile within IRAC3 weight map                  |
| 73 # f_IRAC4      | Total flux in IRAC4 zeropoint 25                                            |
| 74 # e_IRAC4      | 1 sigma error in IRAC4 total flux zeropoint 25                              |
| 75 # w_IRAC4      | Weight relative to 95th percentile within IRAC4 weight map                  |
| 76 # tot_cor      | Correction from AUTO to total flux based on F160W F140W                     |
| 77 # wmin_ground  | Minimum weight for all ground-based photometry                              |
| 78 # wmin_hst     | Minimum weight for ACS/WFC3 bands excluding no coverage                     |
| 79 # wmin_wfc3    | Minimum weight for F160W, F125W and F140W excluding no coverage             |
| 80 # wmin_irac    | Minimum weight for IRAC bands excluding no coverage                         |
| 81 # z_spec       | Spectroscopic redshift, when available see Skelton et al., 2014 for sources |
| 82 # star_flag    | For F160W<25, star=1 and galaxy=0; for F160W>25, flag=2                     |
| 83 # kron_radius  | KRON_RADIUS                                                                 |
| 84 # a_image      | A_IMAGE semi-major axis, pixels                                             |
| 85 # b_image      | B_IMAGE semi-minor axis, pixels                                             |
| 86 # theta_J2000  | Position angle of the major axis counter-clockwise, $0.0 = X$ world axis    |
| 87 # class_star   | Sextractor stellarity-index CLASS_STAR                                      |
| 88 # flux_radius  | Circular aperture radius enclosing half the total flux                      |
| 89 # fwhm_image   | FWHM pixels from a gaussian fit to the core                                 |
| 90 # flags        | SExtractor extraction flags measured                                        |
| 91 # IRAC1_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH1    |
| 92 # IRAC2_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH2    |
| 93 # IRAC3_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH3    |
| 94 # IRAC4_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH4    |
| 95 # contam_flag  | A flag for IRAC phot contam ratio >50% all bands . 0=OK, 1=bad              |
| 96 # f140w_flag   | Set if F140W is used for the corrections to total i.e., no F160W coverage   |
| 97 # use_phot     | Use flag: 1=USE, 0=DON'T USE; see Skelton et al. 2014 for definition        |
| 98 # near_star    | 1=Close to a star                                                           |
| 99 # nexp_f125w   | Number of individual exposures in F125W, based on NEXP maps                 |
| 100 # nexp_f140w  | Number of individual exposures in F140W, based on NEXP maps                 |
| 101 # nexp_f160w  | Number of individual exposures in F160W, based on NEXP maps                 |

Table 3.4 – continued from previous page

## 3.5.4 GOODS-S

RELEASE: V4.1

DATE: MARCH 15TH, 2014

SOURCE: http://3dhst.research.yale.edu

## **Downloads**

CATALOG DOWNLOAD: goodss\_3dhst.v4.1.cats.tar

This file opens into a directory: goodss\_3dhst.v4.1.cats. The following are the contents of this directory:

- Catalog/
  - goodss\_3dhst.v4.1.cat: photometric catalog, ASCII format
  - goodss\_3dhst.v4.1.cat.FITS: photometric catalog, FITS format
- Eazy/
  - goodss\_3dhst.v4.1.coeff:

### Coefficients of fits for all objects

• goodss\_3dhst.v4.1.param:

Parameter file containing all of the parameter values used to compute goodss\_3dhst.v4.1.zout, as well as information on the individual filters and templates used.

- goodss\_3dhst.v4.1.pz: Binary output file containing redshift z, chi squared at z, prior, probability distribution pz
- goodss\_3dhst.v4.1.readbin.pro: IDL code demonstrating how to read in the binary output from EAZY
- goodss\_3dhst.v4.1.temp\_sed
- goodss\_3dhst.v4.1.tempfilt
- goodss\_3dhst.v4.1.translate: Eazy translate file listing the flux and error columns and corresponding filter number in filter transmission file FILTERS.res.latest
- goodss\_3dhst.v4.1.zbin: Binary output file containing observed and best-fit template for each object
- goodss\_3dhst.v4.1.zout: EAZY output file, ASCII format
- goodss\_3dhst.v4.1.zout.FITS: EAZY output file, FITS format
- Fast/
  - goodss\_3dhst.v4.1.fout: FAST output file, ASCII format
  - goodss\_3dhst.v4.1.fout.FITS: FAST output file, FITS format
  - goodss\_3dhst.v4.1.param: input parameter file for FAST
  - goodss\_3dhst.v4.1.translate: filter translate file for FAST
- Restframe/
  - goodss\_3dhst.v4.1.master.RF: rest frame colors, ASCII format
  - goodss\_3dhst.v4.1.master.RF.FITS: rest frame colors, fits format

The contents of each file are explained below.

## **Photometric Catalog**

The detailed methods for creating the catalogs are described in a companion paper - Skelton et al. (2014). The photometric catalog for the goodss field contains the following datasets:

| Bands                       | Survey    | Reference                                 |
|-----------------------------|-----------|-------------------------------------------|
| U, R                        | ESO GOODS | Nonino et al. 2009                        |
| U38, B, V, Rc, I            | GaBoDs    | Hildebrandt et al. 2006, Erben 2005       |
| 14 medium band filters      | MUSYC     | Cardamone et al. 2010                     |
| F435W, F606W, F775W, F850LP | GOODS     | Giavalisco et al. 2004                    |
| F606W,F814W                 | CANDELS   | Koekemoer et al. 2011                     |
| J, H, Ks                    | ESO/GOODS | Retzlaff et al. 2010, Wuyts et al. 2008   |
| J, Ks                       | TENIS     | Hsieh et al. 2012                         |
| F140W                       | 3D-HST    | Brammer et al. 2012                       |
| F125W,F160W                 | CANDELS   | Grogin et al. 2011, Koekemoer et al. 2011 |
| 3.6,4.5um                   | SEDS      | Ashby et al. (2013)                       |
| 5.8,8.0um                   | GOODS     | Dickinson et al. 2003                     |

The catalog has a single line header with all column names as shown here. The ASCII and the FITS versions of the catalog contain the same columns.

```
#id x y ra dec faper_F160W eaper_F160W faper_F140W eaper_F140W f_F160W e_F160W w_F160W
f_U38 e_U38 w_U38 f_U e_U w_U f_F435W e_F435W w_F435W f_B e_B w_B f_V e_V w_V f_F606Wcand
e_F606Wcand w_F606Wcand f_F606W e_F606W w_F606W f_R e_R w_R f_Rc e_Rc w_Rc f_F775W e_F775W
w_F775W f_I e_I w_I f_F814Wcand e_F814Wcand w_F814Wcand f_F850LP e_F850LP w_F850LP f_F850LPcand
e_F850LPcand w_F850LPcand f_F125W e_F125W w_F125W f_J e_J w_J f_tenisJ e_tenisJ w_tenisJ
f_F140W e_F140W w_F140W f_H e_H w_H f_tenisK e_tenisK w_tenisK f_Ks e_Ks w_Ks f_IRAC1
e_IRAC1 w_IRAC1 f_IRAC2 e_IRAC2 w_IRAC2 f_IRAC3 e_IRAC3 w_IRAC3 f_IRAC4 e_IRAC4 w_IRAC4
f_IA427 e_IA427 f_IA445 e_IA445 f_IA505 e_IA505 f_IA527 e_IA527 f_IA550 e_IA550 f_IA574
e_IA574 f_IA598 e_IA598 f_IA624 e_IA624 f_IA651 e_IA651 f_IA679 e_IA679 f_IA738 e_IA738
f_IA767 e_IA767 f_IA797 e_IA797 f_IA856 e_IA856 tot_cor wmin_ground wmin_hst wmin_irac
wmin_wfc3 z_spec star_flag kron_radius a_image b_image theta_J2000 class_star flux_radius
fwhm_image flags IRAC1_contam IRAC2_contam IRAC3_contam IRAC4_contam contam_flag f140w_flag
use_phot near_star nexp_f125w nexp_f140w nexp_f160w
# goodss_3dhst.v4.1.cat:
# by R. E. Skelton (3/11/2014)
```

All fluxes are normalized to an AB zeropoint of 25, such that: magAB = 25.0-2.5\*log10(flux).

| Column Name     | Column Content                                                        |
|-----------------|-----------------------------------------------------------------------|
| 1 # id          | Unique identifier within a given field                                |
| 2 # x           | X centroid in image coordinates                                       |
| 3 # y           | Y centroid in image coordinates                                       |
| 4 # ra          | RA J2000 degrees                                                      |
| 5 # dec         | Dec J2000 degrees                                                     |
| 6 # faper_F160W | Flux within a 0.7 arcsecond aperture in F160W zeropoint 25.0          |
| 7 # eaper_F160W | 1 sigma error within a 0.7 arcsecond aperture in F160W zeropoint 25.0 |
| 8 # faper_F140W | Flux within a 0.7 arcsecond aperture in F140W zeropoint 25.0          |
| 9 # eaper_F140W | 1 sigma error within a 0.7 arcsecond aperture in F140W zeropoint 25.0 |
| 10 # f_F160W    | Total flux in F160W zeropoint 25                                      |
| 11 # e_F160W    | 1 sigma error in F160W total flux zeropoint 25                        |
| 12 # w_F160W    | Weight relative to 95th percentile within F160W weight map            |
| 13 # f_U38      | Total flux in U38 zeropoint 25                                        |
| 14 # e_U38      | 1 sigma error in U38 total flux zeropoint 25                          |
| 15 # w_U38      | Weight relative to 95th percentile within U38 weight map              |
| 16 # f_U        | Total flux in U zeropoint 25                                          |
| 17 # e_U        | 1 sigma error in U total flux zeropoint 25                            |
| 18 # w_U        | Weight relative to 95th percentile within U weight map                |
| 19 # f_F435W    | Total flux in ACS F435W zeropoint 25                                  |
|                 | Continued on next page                                                |

| Column Name                                              | Column Content                                                                                                  |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 20 # e_F435W                                             | 1 sigma error in ACS F435W total flux zeropoint 25                                                              |
| 21 # w_F435W                                             | Weight relative to 95th percentile within F435W weight map                                                      |
| 22 # f_B                                                 | Total flux in B zeropoint 25                                                                                    |
| 23 # e_B                                                 | 1 sigma error in B total flux zeropoint 25                                                                      |
| 24 # w B                                                 | Weight relative to 95th percentile within B weight map                                                          |
|                                                          | Total flux in V zeropoint 25                                                                                    |
| 26 # e V                                                 | 1 sigma error in V total flux zeropoint 25                                                                      |
| <br>27 # w_V                                             | Weight relative to 95th percentile within V weight map                                                          |
|                                                          | Total flux in F606W CANDELS zeropoint 25                                                                        |
|                                                          | 1 sigma error in F606W CANDELS total flux zeropoint 25                                                          |
| 30 # w F606Wcand                                         | Weight relative to 95th percentile within F606W CANDELS weight map                                              |
| 31 # f F606W                                             | Total flux in F606W GOODS zeropoint 25                                                                          |
| 32 # e_F606W                                             | 1 sigma error in F606W GOODS total flux zeropoint 25                                                            |
| 33 # w F606W                                             | Weight relative to 95th percentile within F606W GOODS weight map                                                |
| 34 # f R                                                 | Total flux in R zeropoint 25                                                                                    |
| 35 # e. R                                                | 1 sigma error in R total flux zeropoint 25                                                                      |
| 36 # w R                                                 | Weight relative to 95th percentile within R weight man                                                          |
| 37 # f. Rc                                               | Total flux in Rc zeropoint 25                                                                                   |
| 38 # e. Rc                                               | 1 sigma error in Rc total flux zeronoint 25                                                                     |
| 30 # W Rc                                                | Weight relative to 95th percentile within Rc weight man                                                         |
| $40 \pm f F775W$                                         | Total flux in F775W GOODS zeropoint 25                                                                          |
| 41 # e F775W                                             | 1 sigma error in F775W GOODS total flux zeropoint 25                                                            |
| $41 \pm 0_{1775W}$                                       | Weight relative to 95th percentile within F775W GOODS weight man                                                |
| $42 \# W_1 773 W$                                        | Total flux in L zeronoint 25                                                                                    |
| 43 # 1_1                                                 | 1 sigma error in L total flux zeropoint 25                                                                      |
| 44 # C_1                                                 | Voight relative to 05th percentile within I weight men                                                          |
| 45 # W_1                                                 | Total flux in E814W CANDELS zaronoint 25                                                                        |
| $40 \# 1_{F014}$ w callu                                 | 1 sigma arror in E814W CANDELS zeropoint 25                                                                     |
| 47 # e_1814 Weand                                        | Weight relative to 05th percentile within E814W CANDELS weight men                                              |
| 40 # f E8501 D                                           | Total flux in E8501 D COODS zaranoint 25                                                                        |
| 50 # e F850LP                                            | 1 sigma error in E850LP GOODS total flux zeropoint 25                                                           |
| 51 # w F850LP                                            | Weight relative to 95th percentile within E850LP GOODS weight man                                               |
| 52 # f E850L Pcand                                       | Total flux in E8501 P CANDELS zeropoint 25                                                                      |
| 52 # 1_1050LF cand                                       | 1 sigma error in ESSOL P CANDELS Letopoint 25                                                                   |
| 54 # w E850L Doord                                       | Voight relative to 05th percentile within E850LD CANDELS weight man                                             |
| 55 # f E125W                                             | Total flux in E125W zeronoint 25                                                                                |
| 56 # 0 E125W                                             | 1 sigma array in F125W total flux zaranaint 25                                                                  |
| $50 \# C_{1125W}$                                        | Weight relative to 05th percentile within E125W weight man                                                      |
| 58 # f I                                                 | Total flux in Izeropoint 25                                                                                     |
| 50 # o I                                                 | 1 sigma error in L total flux zeropoint 25                                                                      |
| <u> </u>                                                 | Voight relative to 05th percentile within L weight man                                                          |
| 00 # W_J<br>61 # f. tonia I                              | Total flux in TENIS L zeropoint 25                                                                              |
| $\frac{01 \# 1\_\text{termsJ}}{62 \# 2 \text{ termisJ}}$ | 1 sigma amor in TENIS I total flux gammaint 25                                                                  |
| $\frac{02 \# e_{\text{unis}}}{62 \# w_{\text{tenis}}}$   | 1 Signa CHOI III 1 ENIS J Will Hux ZCIOPOIII 23<br>Weight relative to 05th percentile within TENIS I weight man |
| $\frac{0.0 \text{ # w_tellisj}}{64 \text{ # f E140W}}$   | Total flux in zeronoint 25                                                                                      |
| <u>04 # 1_F140W</u>                                      | 1 diama arran in total flux paranaint 25                                                                        |
| 66 # w E140W                                             | 1 Sigma error in total nux zeropoint 25<br>Waight relative to 05th personalile within and the man               |
| 00 # W_F140W                                             | Tetal flux in LL generation 25                                                                                  |
| 0/#I_H                                                   | I otal liux in H Zeropoint 25                                                                                   |
| 00 # e_H                                                 | 1 sigma error in H total nux zeropoint 25                                                                       |
|                                                          | Continued on next page                                                                                          |

Table 3.5 – continued from previous page

| Column Name                     | Column Content                                               |  |  |  |
|---------------------------------|--------------------------------------------------------------|--|--|--|
| 69 # w_H                        | Weight relative to 95th percentile within H weight map       |  |  |  |
| 70 # f_tenisK                   | Total flux in TENIS K zeropoint 25                           |  |  |  |
| 71 # e_tenisK                   | 1 sigma error in TENIS K total flux zeropoint 25             |  |  |  |
| 72 # w_tenisK                   | Weight relative to 95th percentile within TENIS K weight map |  |  |  |
| 73 # f_Ks                       | Total flux in K zeropoint 25                                 |  |  |  |
| 74 # e_Ks                       | 1 sigma error in K total flux zeropoint 25                   |  |  |  |
| 75 # w Ks                       | Weight relative to 95th percentile within K weight map       |  |  |  |
|                                 | Total flux in IRAC1 zeropoint 25                             |  |  |  |
| 77 # e_IRAC1                    | 1 sigma error in IRAC1 total flux zeropoint 25               |  |  |  |
| 78 # w IRAC1                    | Weight relative to 95th percentile within IRAC1 weight map   |  |  |  |
|                                 | Total flux in IRAC2 zeropoint 25                             |  |  |  |
| 80 # e_IRAC2                    | 1 sigma error in IRAC2 total flux zeropoint 25               |  |  |  |
|                                 | Weight relative to 95th percentile within IRAC2 weight map   |  |  |  |
|                                 | Total flux in IRAC3 zeropoint 25                             |  |  |  |
| 83 # e IRAC3                    | 1 sigma error in IRAC3 total flux zeropoint 25               |  |  |  |
|                                 | Weight relative to 95th percentile within IRAC3 weight map   |  |  |  |
| 85 # f_IRAC4                    | Total flux in IRAC4 zeropoint 25                             |  |  |  |
| 86 # e_IRAC4                    | 1 sigma error in IRAC4 total flux zeropoint 25               |  |  |  |
| 87 # w IRAC4                    | Weight relative to 95th percentile within IRAC4 weight map   |  |  |  |
| 88 # f IA427                    | Total flux in IA427 zeropoint 25                             |  |  |  |
| 89 # e_IA427                    | 1 sigma error in IA427 total flux zeropoint 25               |  |  |  |
| 90 # f_IA445                    | Total flux in IA445 zeropoint 25                             |  |  |  |
| 91 # e_IA445                    | 1 sigma error in IA445 total flux zeropoint 25               |  |  |  |
| 92 # f IA505                    | Total flux in IA505 zeropoint 25                             |  |  |  |
| 93 # e_IA 505                   | 1 sigma error in IA505 total flux zeropoint 25               |  |  |  |
| 94 # f IA527                    | Total flux in IA527 zeropoint 25                             |  |  |  |
| 95 # e_IA527                    | 1 sigma error in IA527 total flux zeropoint 25               |  |  |  |
| 96 # f_IA550                    | Total flux in IA550 zeropoint 25                             |  |  |  |
| 97 # e_IA550                    | 1 sigma error in IA550 total flux zeropoint 25               |  |  |  |
| 98 # f IA574                    | Total flux in IA574 zeropoint 25                             |  |  |  |
| 99 # e_IA574                    | 1 sigma error in IA574 total flux zeropoint 25               |  |  |  |
| 100 # f IA 598                  | Total flux in IA598 zeropoint 25                             |  |  |  |
| 101 # e. IA 598                 | 1 sigma error in IA598 total flux zeropoint 25               |  |  |  |
| 102 # f IA624                   | Total flux in IA624 zeropoint 25                             |  |  |  |
| 102 # 1_1102 !<br>103 # e_IA624 | 1 sigma error in IA624 total flux zeropoint 25               |  |  |  |
| 104 # f_IA651                   | Total flux in IA651 zeropoint 25                             |  |  |  |
| 105 # e_IA651                   | 1 sigma error in IA651 total flux zeropoint 25               |  |  |  |
| 106 # f IA679                   | Total flux in IA679 zeropoint 25                             |  |  |  |
| 107 # e IA679                   | 1 sigma error in IA679 total flux zeropoint 25               |  |  |  |
| 108 # f IA738                   | Total flux in IA738 zeropoint 25                             |  |  |  |
| 109 # e_IA738                   | 1 sigma error in IA738 total flux zeropoint 25               |  |  |  |
| 110 # f IA767                   | Total flux in IA767 zeropoint 25                             |  |  |  |
| 111 # e_IA767                   | 1 sigma error in IA767 total flux zeropoint 25               |  |  |  |
| 112 # f IA797                   | Total flux in IA797 zeropoint 25                             |  |  |  |
| 113 # e_IA797                   | 1 sigma error in IA797 total flux zeropoint 25               |  |  |  |
| 114 # f IA856                   | Total flux in IA856 zeropoint 25                             |  |  |  |
| 115 # e_IA856                   | 1 sigma error in IA856 total flux zeropoint 25               |  |  |  |
| 116 # tot_cor                   | Correction from AUTO to total flux based on F160W F140W      |  |  |  |
| 117 # wmin ground               | Minimum weight for all ground-based photometry               |  |  |  |
|                                 | Continued on next page                                       |  |  |  |

Table 3.5 – continued from previous page

| Column Name        | Column Content                                                              |
|--------------------|-----------------------------------------------------------------------------|
| 118 # wmin_hst     | Minimum weight for ACS/WFC3 bands excluding no coverage                     |
| 119 # wmin_wfc3    | Minimum weight for F160W, F125W and F140W excluding no coverage             |
| 120 # wmin_irac    | Minimum weight for IRAC bands excluding no coverage                         |
| 121 # z_spec       | Spectroscopic redshift, when available see Skelton et al., 2014 for sources |
| 122 # star_flag    | For F160W<25, star=1 and galaxy=0; for F160W>25, flag=2                     |
| 123 # kron_radius  | KRON_RADIUS                                                                 |
| 124 # a_image      | A_IMAGE semi-major axis, pixels                                             |
| 125 # b_image      | B_IMAGE semi-minor axis, pixels                                             |
| 126 # theta_J2000  | Position angle of the major axis counter-clockwise, $0.0 = X$ world axis    |
| 127 # class_star   | Sextractor stellarity-index CLASS_STAR                                      |
| 128 # flux_radius  | Circular aperture radius enclosing half the total flux                      |
| 129 # fwhm_image   | FWHM pixels from a gaussian fit to the core                                 |
| 130 # flags        | SExtractor extraction flags measured                                        |
| 131 # IRAC1_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH1    |
| 132 # IRAC2_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH2    |
| 133 # IRAC3_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH3    |
| 134 # IRAC4_contam | Ratio of contaminating flux from neighbors to the object's flux IRAC CH4    |
| 135 # contam_flag  | A flag for IRAC phot contam ratio >50% all bands . 0=OK, 1=bad              |
| 136 # f140w_flag   | Set if F140W is used for the corrections to total i.e., no F160W coverage   |
| 137 # use_phot     | Use flag: 1=USE, 0=DON'T USE; see Skelton et al. 2014 for definition        |
| 138 # near_star    | 1=Close to a star                                                           |
| 139 # nexp_f125w   | Number of individual exposures in F125W, based on NEXP maps                 |
| 140 # nexp_f140w   | Number of individual exposures in F140W, based on NEXP maps                 |
| 141 # nexp_f160w   | Number of individual exposures in F160W, based on NEXP maps                 |

| Table 3.5 – continued | from | previous | page |
|-----------------------|------|----------|------|
|-----------------------|------|----------|------|

## 3.5.5 UDS

RELEASE: V4.1

DATE: MARCH 15TH, 2014

SOURCE: http://3dhst.research.yale.edu

August 22, 2014 changes:

• A major update has been made to the UDS photometric catalog, EAZY and FAST outputs. We traced a bug being reported in the released v4.1 UDS catalogs to a difference between the catalog available for download from the 3D-HST website and the one for internal use. The photometric catalog provided on the website contained an obvious bug which affected the fluxes in F125W, F140W, J, H, K and all IRAC bands, the tot\_cor and wmin\_wfc3 columns, as well as the EAZY and FAST outputs derived from it. The RF colors and the master catalog were not affected. Note that the plots in the accompanying paper all use the correct version. The UDS catalog has been updated to the correct version, which will be called v4.2 to avoid confusion.

## **Downloads**

CATALOG DOWNLOAD: uds\_3dhst.v4.2.cats.tar

This file opens into a directory: uds\_3dhst.v4.2.cats. The following are the contents of this directory:

• Catalog/

- uds\_3dhst.v4.2.cat: photometric catalog, ASCII format

- uds\_3dhst.v4.2.cat.FITS: photometric catalog, FITS format

• Eazy/

- uds\_3dhst.v4.2.coeff: Coefficients of fits for all objects
- uds\_3dhst.v4.2.param: Parameter file containing all of the parameter values used

to compute uds\_3dhst.v4.2.zout, as well as information on the individual filters and templates used.

- uds\_3dhst.v4.2.pz: Binary output file containing redshift z, chi squared at z, prior, probability distribution pz
- uds\_3dhst.v4.2.readbin.pro: IDL code demonstrating how to read in the binary output from EAZY
- uds\_3dhst.v4.2.temp\_sed
- uds\_3dhst.v4.2.tempfilt
- uds\_3dhst.v4.2.translate: Eazy translate file listing the flux and error columns and corresponding filter number in filter transmission file FILTERS.res.latest
- uds\_3dhst.v4.2.zbin: Binary output file containing observed and best-fit template for each object
- uds\_3dhst.v4.2.zout: EAZY output file, ASCII format
- uds\_3dhst.v4.2.zout.FITS: EAZY output file, FITS format

• Fast/

- uds\_3dhst.v4.2.fout: FAST output file, ASCII format
- uds\_3dhst.v4.2.fout.FITS: FAST output file, FITS format
- uds\_3dhst.v4.2.param: input parameter file for FAST
- uds\_3dhst.v4.2.translate: filter translate file for FAST
- RF\_colors/
  - uds\_3dhst.v4.2.master.RF: rest frame colors, ASCII format
  - uds\_3dhst.v4.2.master.RF.FITS: rest frame colors, fits format

The contents of each file are explained below.

### **Photometric Catalog**

The detailed methods for creating the catalogs are described in a companion paper - Skelton et al. (2014).

The photometric catalog for the uds field contains the following datasets:

| Bands        | Survey  | Reference                |
|--------------|---------|--------------------------|
| U            | CFHT    | Almaini/Foucaud in prep. |
| B,V,R,i,z    | SXDS    | Furusawa et al. (2008)   |
| F606W, F814W | CANDELS | Koekemoer et al. 2011    |
| J, H, Ks     | UKIDSS  | Almaini et al .in prep.  |
| F140W        | 3D-HST  | Brammer et al. 2012      |
| F125W, F160W | CANDELS | Koekemoer et al. 2011    |
| 3.6,4.5um    | SEDS    | Ashby et al. (2013)      |
| 5.8, 8.0um   | SpUDS   | Dunlop et al. in prep.   |

The catalog has a single line header with all column names as shown here. The ASCII and the

### FITS versions of the catalog contain the same columns.

# id x y ra dec faper\_F160W eaper\_F160W faper\_F140W eaper\_F140W f\_F160W e\_F160W w\_F160W f\_u e\_u w\_u f\_B e\_B w\_B f\_V e\_V w\_V f\_F606W e\_F606W w\_F606W f\_R e\_R w\_R f\_i e\_i w\_i f\_F814W e\_F814W w\_F814W f\_z e\_z w\_z f\_F125W e\_F125W w\_F125W f\_J e\_J w\_J f\_F140W e\_F140W w\_F140W f\_H e\_H w\_H f\_K e\_K w\_K f\_IRAC1 e\_IRAC1 w\_IRAC1 f\_IRAC2 e\_IRAC2 w\_IRAC2 f\_IRAC3 e\_IRAC3 w\_IRAC3 f\_IRAC4 e\_IRAC4 w\_IRAC4 tot\_cor wmin\_ground wmin\_hst wmin\_irac wmin\_wfc3 z\_spec star\_flag kron\_radius a\_image b\_image theta\_J2000 class\_star flux\_radius fwhm\_image flags IRAC1\_contam IRAC2\_contam IRAC3\_contam IRAC4\_contam contam\_flag f140w\_flag use\_phot near\_star nexp\_f125w nexp\_f140w nexp\_f160w # uds\_3dhst.v4.1.cat:

# by R. E. Skelton (2014/03/12)

All fluxes are normalized to an AB zeropoint of 25, such that: magAB = 25.0-2.5\*log10(flux)

| Column Name     | Column Content                                                        |
|-----------------|-----------------------------------------------------------------------|
| 1 # id          | Unique identifier within a given field                                |
| 2 # x           | X centroid in image coordinates                                       |
| 3 # y           | Y centroid in image coordinates                                       |
| 4 # ra          | RA J2000 degrees                                                      |
| 5 # dec         | Dec J2000 degrees                                                     |
| 6 # faper_F160W | Flux within a 0.7 arcsecond aperture in F160W zeropoint 25.0          |
| 7 # eaper_F160W | 1 sigma error within a 0.7 arcsecond aperture in F160W zeropoint 25.0 |
| 8 # faper_F140W | Flux within a 0.7 arcsecond aperture in F140W zeropoint 25.0          |
| 9 # eaper_F140W | 1 sigma error within a 0.7 arcsecond aperture in F140W zeropoint 25.0 |
| 10 # f_F160W    | Total flux in F160W zeropoint 25                                      |
| 11 # e_F160W    | 1 sigma error in F160W total flux zeropoint 25                        |
| 12 # w_F160W    | Weight relative to 95th percentile within F160W weight map            |
| 13 # f_u        | Total flux in U zeropoint 25                                          |
| 14 # e_u        | 1 sigma error in U total flux zeropoint 25                            |
| 15 # w_u        | Weight relative to 95th percentile within U weight map                |
| 16 # f_B        | Total flux in B zeropoint 25                                          |
| 17 # e_B        | 1 sigma error in B total flux zeropoint 25                            |
| 18 # w_B        | Weight relative to 95th percentile within B weight map                |
| 19 # f_V        | Total flux in V zeropoint 25                                          |
| 20 # e_V        | 1 sigma error in V total flux zeropoint 25                            |
| 21 # w_V        | Weight relative to 95th percentile within V weight map                |
| 22 # f_F606W    | Total flux in F606W zeropoint 25                                      |
| 23 # e_F606W    | 1 sigma error in F606W total flux zeropoint 25                        |
| 24 # w_F606W    | Weight relative to 95th percentile within F606W weight map            |
| 25 # f_R        | Total flux in R zeropoint 25                                          |
| 26 # e_R        | 1 sigma error in R total flux zeropoint 25                            |
| 27 # w_R        | Weight relative to 95th percentile within R weight map                |
| 28 # f_i        | Total flux in I zeropoint 25                                          |
| 29 # e_i        | 1 sigma error in I total flux zeropoint 25                            |
| 30 # w_i        | Weight relative to 95th percentile within I weight map                |
| 31 # f_F814W    | Total flux in F814W zeropoint 25                                      |
| 32 # e_F814W    | 1 sigma error in F814W total flux zeropoint 25                        |
| 33 # w_F814W    | Weight relative to 95th percentile within F814W weight map            |
| 34 # f_z        | Total flux in Z zeropoint 25                                          |
| 35 # e_z        | 1 sigma error in Z total flux zeropoint 25                            |
| 36 # w_z        | Weight relative to 95th percentile within Z weight map                |
| 37 # f_F125W    | Total flux in F125W zeropoint 25                                      |
|                 | Continued on next page                                                |

| Column Name                                          | Column Content                                                              |
|------------------------------------------------------|-----------------------------------------------------------------------------|
| 38 # e_F125W                                         | 1 sigma error in F125W total flux zeropoint 25                              |
| 39 # w_F125W                                         | Weight relative to 95th percentile within F125W weight map                  |
| 40 # f_J                                             | Total flux in Jzeropoint 25                                                 |
| 41 # e_J                                             | 1 sigma error in J total flux zeropoint 25                                  |
| 42 # w_J                                             | Weight relative to 95th percentile within J weight map                      |
| 43 # f F140W                                         | Total flux in zeropoint 25                                                  |
| 44 # e F140W                                         | 1 sigma error in total flux zeropoint 25                                    |
| 45 # w F140W                                         | Weight relative to 95th percentile within weight map                        |
| 46 # f H                                             | Total flux in H zeropoint 25                                                |
| 47 # e H                                             | 1 sigma error in H total flux zeropoint 25                                  |
| 48 # w H                                             | Weight relative to 95th percentile within H weight map                      |
| 49 # f K                                             | Total flux in K zeropoint 25                                                |
| 50 # e. K                                            | 1 sigma error in K total flux zeropoint 25                                  |
| 50 # C_I                                             | Weight relative to 95th percentile within K weight map                      |
| 52 # f_IRAC1                                         | Total flux in IRAC1 zeronoint 25                                            |
| 53 # e_IRAC1                                         | 1 sigma error in IR AC1 total flux zeropoint 25                             |
| 54 # w IRAC1                                         | Weight relative to 95th percentile within IRAC1 weight man                  |
| $54 \# W_{IRAC1}$                                    | Total flux in IBAC2 zeropoint 25                                            |
| $55 \# 1_{\text{IRAC2}}$                             | 1 sigma error in IBAC2 total flux zeropoint 25                              |
| $50 \# C_{IRAC2}$                                    | Weight relative to 95th percentile within IRAC2 weight man                  |
| 58 # f IPAC3                                         | Total flux in IPAC3 zeropoint 25                                            |
| $30 \# 1$ _IRAC3                                     | 1 cigma arror in IRAC3 zeropoint 25                                         |
| 59 # C_IRAC5                                         | Vaiaht relative to 05th percentile within IDAC2 weight man                  |
| 00 # W_IKAC5                                         | Testal flow in IDAC4 excepcies 25                                           |
| $\frac{01 \# 1_\text{IRAC4}}{62 \# 2 \text{ IRAC4}}$ | 1 signa smar in IDAC4 total flux responsing 25                              |
| $62 \# e_{IRAC4}$                                    | 1 signa error ni iRAC4 total nux zeropoint 25                               |
| 03 # W_IKAC4                                         | Weight relative to 95th percentile within IRAC4 weight map                  |
| 64 # tot_cor                                         | Correction from AUTO to total nux based on F160W F140W                      |
| 65 # wmin_ground                                     | Minimum weight for all ground-based photometry                              |
| 66 # wmin_hst                                        | Minimum weight for ACS/WFC3 bands excluding no coverage                     |
| 67 # wmin_irac                                       | Minimum weight for IRAC bands excluding no coverage                         |
| 68 # wmin_wfc3                                       | Minimum weight for F160W, F125W and F140W excluding no coverage             |
| 69 # z_spec                                          | Spectroscopic redshift, when available see Skelton et al., 2014 for sources |
| 70 # star_flag                                       | For F160W<25, star=1 and galaxy=0; for F160W>25, flag=2                     |
| 71 # kron_radius                                     | KRON_RADIUS                                                                 |
| 72 # a_image                                         | A_IMAGE semi-major axis, pixels                                             |
| 73 # b_image                                         | B_IMAGE semi-minor axis, pixels                                             |
| _74 # theta_J2000                                    | Position angle of the major axis counter-clockwise, $0.0 = X$ world axis    |
| 75 # class_star                                      | Sextractor stellarity-index CLASS_STAR                                      |
| 76 # flux_radius                                     | Circular aperture radius enclosing half the total flux                      |
| 77 # fwhm_image                                      | FWHM pixels from a gaussian fit to the core                                 |
| 78 # flags                                           | SExtractor extraction flags measured                                        |
| 79 # IRAC1_contam                                    | Ratio of contaminating flux from neighbors to the object's flux IRAC CH1    |
| 80 # IRAC2_contam                                    | Ratio of contaminating flux from neighbors to the object's flux IRAC CH2    |
| 81 # IRAC3_contam                                    | Ratio of contaminating flux from neighbors to the object's flux IRAC CH3    |
| 82 # IRAC4_contam                                    | Ratio of contaminating flux from neighbors to the object's flux IRAC CH4    |
| 83 # contam_flag                                     | A flag for IRAC phot contam ratio >50% all bands . 0=OK, 1=bad              |
| 84 # f140w_flag                                      | Set if F140W is used for the corrections to total i.e., no F160W coverage   |
| 85 # use_phot                                        | Use flag: 1=USE, 0=DON'T USE; see Skelton et al. 2014 for definition        |
| 86 # near_star                                       | 1=Close to a star                                                           |
|                                                      | Continued on next page                                                      |

 Table 3.6 – continued from previous page

| Column Name     | Column Content                                              |
|-----------------|-------------------------------------------------------------|
| 87 # nexp_f125w | Number of individual exposures in F125W, based on NEXP maps |
| 88 # nexp_f140w | Number of individual exposures in F140W, based on NEXP maps |
| 89 # nexp_f160w | Number of individual exposures in F160W, based on NEXP maps |

Table 3.6 – continued from previous page

## 3.6 Master Catalog

We combine the catalogs for the five individual fields into a master catalog which contains a subset of parameters common to all of them. This joint catalog is provided in both ASCII and FITS format. Below we show the header for this file and a description of the columns. The id column in this catalog is no longer unique. An unique identifier can be created from a combination of the id and the field name.

```
# id field ra dec x y z_spec z_peak faper_F140W eaper_F140W faper_F160W eaper_F160W f_F606W
eF606W f_F814W e_F814W f_F125W e_F125W f_F140W e_F140W f_F160W e_F160W tot_cor kron_radius
a_image b_image flux_radius fwhm_image flags f140w_flag star_flag use_phot near_star
nexp_f125w nexp_f140w nexp_f160w lmass Av
```

All fluxes are normalized to an AB zeropoint of 25, such that: magAB = 25.0-2.5\*log10(flux)

| Column Name      | Column Content                                                              |
|------------------|-----------------------------------------------------------------------------|
| 1 # id           | Unique identifier within a given field                                      |
| 2 # field        | Field                                                                       |
| 3 # x            | X centroid in image coordinates                                             |
| 4 # y            | Y centroid in image coordinates                                             |
| 5 # ra           | RA J2000 degrees                                                            |
| 6 # dec          | Dec J2000 degrees                                                           |
| 7 # z_spec       | Spectroscopic redshift, when available see Skelton et al., 2014 for sources |
| 8 # z_peak       | Photometric redshift from EAZY fit                                          |
| 9 # faper_F160W  | Flux within a 0.7 arcsecond aperture in F160W zeropoint 25.0                |
| 10 # eaper_F160W | 1 sigma error within a 0.7 arcsecond aperture in F160W zeropoint 25.0       |
| 11 # faper_F140W | Flux within a 0.7 arcsecond aperture in F140W zeropoint 25.0                |
| 12 # eaper_F140W | 1 sigma error within a 0.7 arcsecond aperture in F140W zeropoint 25.0       |
| 13 # f_F160W     | Total flux in F160W zeropoint 25                                            |
| 14 # e_F160W     | 1 sigma error in F160W total flux zeropoint 25                              |
| 15 # w_F160W     | Weight relative to 95th percentile within F160W weight map                  |
| 16 # f_F606W     | Total flux in F606W zeropoint 25                                            |
| 17 # e_F606W     | 1 sigma error in F606W total flux zeropoint 25                              |
| 18 # w_F606W     | Weight relative to 95th percentile within F606W weight map                  |
| 19 # f_F814W     | Total flux in F814W zeropoint 25                                            |
| 20 # e_F814W     | 1 sigma error in F814W total flux zeropoint 25                              |
| 21 # w_F814W     | Weight relative to 95th percentile within F814W weight map                  |
| 22 # f_F125W     | Total flux in F125W zeropoint 25                                            |
| 23 # e_F125W     | 1 sigma error in F125W total flux zeropoint 25                              |
| 24 # w_F125W     | Weight relative to 95th percentile within F125W weight map                  |
| 25 # f_F140W     | Total flux in zeropoint 25                                                  |
| 26 # e_F140W     | 1 sigma error in total flux zeropoint 25                                    |
| 27 # w_F140W     | Weight relative to 95th percentile within weight map                        |
| 28 # f_F160W     | Total flux in F160W zeropoint 25                                            |
| 29 # e_F160W     | 1 sigma error in F160W total flux zeropoint 25                              |
| 30 # w_F160W     | Weight relative to 95th percentile within F160W weight map                  |
|                  | Continued on next page                                                      |

| Column Name      | Column Content                                                            |
|------------------|---------------------------------------------------------------------------|
| 31 # tot_cor     | Correction from AUTO to total flux based on F160W F140W                   |
| 32 # kron_radius | KRON_RADIUS                                                               |
| 33 # a_image     | A_IMAGE semi-major axis, pixels                                           |
| 34 # b_image     | B_IMAGE semi-minor axis, pixels                                           |
| 35 # class_star  | Sextractor stellarity-index CLASS_STAR                                    |
| 36 # flux_radius | Circular aperture radius enclosing half the total flux                    |
| 37 # fwhm_image  | FWHM pixels from a gaussian fit to the core                               |
| 38 # flags       | SExtractor extraction flags measured                                      |
| 39 # f140w_flag  | Set if F140W is used for the corrections to total i.e., no F160W coverage |
| 40 # star_flag   | For F160W<25, star=1 and galaxy=0; for F160W>25, flag=2                   |
| 41 # use_phot    | Use flag: 1=USE, 0=DON'T USE; see Skelton et al. 2014 for definition      |
| 42 # near_star   | 1=Close to a star                                                         |
| 43 # nexp_f125w  | Number of individual exposures in F125W, based on NEXP maps               |
| 44 # nexp_f140w  | Number of individual exposures in F140W, based on NEXP maps               |
| 45 # nexp_f160w  | Number of individual exposures in F160W, based on NEXP maps               |
| 46 # 1mass       | LogMstar/Msun from FAST fit                                               |
| 47 # Av          | Dust attenuation in the V-band from FAST fit                              |

| Table 3 | .7 – | continued | from | previous | page |
|---------|------|-----------|------|----------|------|
|---------|------|-----------|------|----------|------|

# ACS/WFC3 MOSAICS

The WFC3 mosaics are produced by the 3D-HST collaboration from public HST data available from the MAST archive. For a detailed description of the WFC3 mosaics, the datasets included and the procedure we follow to produce them, please refer to Skelton et al. (2014). The ACS images are from the GOODS and CANDELS surveys. Again, please refer to Skelton et al. (2014) for full description.

For all ACS images as well as the WFC3 F125W and F140W bands we provide images which have been PSF-convolved to the WFC3/W160W band. PSFs for all the bands are also provided as separate downloads.

The catalog detection was done on a noise-equalized combination of F125W+F140W+F160W. We provide the detection image and the segmentation maps.

Finally, a mask image is also available for download. Areas near stars and areas of less than 2 exposures in both F125W and F160W are set to 0, while the rest of the image is set to 1. These masks were used to produce the **use\_phot** flag in the photometric catalogs.

All images are available as archived (.gz) individually or within a tar ball for each filter. Here we list all the images available for download for each of the fields with a short description.

# 4.1 AEGIS

- aegis\_3dhst\_v4.0\_f125w.tar
  - aegisaegis\_3dhst.v4.0.F125W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - aegis\_3dhst.v4.0.F125W\_exp.fits.gz: exposure map
  - aegis\_3dhst.v4.0.F125W\_nexp.fits.gz: number of exposures map
  - aegis\_3dhst.v4.0.F125W\_orig\_sci.fits.gz: science image
  - aegis\_3dhst.v4.0.F125W\_orig\_wht.fits.gz: weight map
- aegis\_3dhst\_v4.0\_f140w.tar
  - aegis\_3dhst.v4.0.F140W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - aegis\_3dhst.v4.0.F140W\_exp.fits.gz: exposure map
  - aegis\_3dhst.v4.0.F140W\_nexp.fits.gz: number of exposures map
  - aegis\_3dhst.v4.0.F140W\_orig\_sci.fits.gz: science image
  - aegis\_3dhst.v4.0.F140W\_orig\_wht.fits.gz: weight map
- aegis\_3dhst\_v4.0\_f160w.tar
  - aegis\_3dhst.v4.0.F160W\_exp.fits.gz: exposure map

- aegis\_3dhst.v4.0.F160W\_nexp.fits.gz: number of exposures map
- aegis\_3dhst.v4.0.F160W\_orig\_sci.fits.gz: science image
- aegis\_3dhst.v4.0.F160W\_orig\_wht.fits.gz: weight map
- aegis\_3dhst\_v4.0\_f606w.tar
  - aegis\_3dhst.v4.0.F606W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - aegis\_3dhst.v4.0.F606W\_orig\_sci.fits.gz: science image
  - aegis\_3dhst.v4.0.F606W\_orig\_wht.fits.gz: weight map
- aegis\_3dhst\_v4.0\_f814w.tar
  - aegis\_3dhst.v4.0.F814W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - aegis\_3dhst.v4.0.F814W\_orig\_sci.fits.gz: science image
  - aegis\_3dhst.v4.0.F814W\_orig\_wht.fits.gz: weight map

## 4.2 COSMOS

- cosmos\_3dhst\_v4.0\_f125w.tar
  - cosmos\_3dhst.v4.0.F125W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - cosmos\_3dhst.v4.0.F125W\_exp.fits.gz: exposure map
  - cosmos\_3dhst.v4.0.F125W\_nexp.fits.gz: number of exposures map
  - cosmos\_3dhst.v4.0.F125W\_orig\_sci.fits.gz: science image
  - cosmos\_3dhst.v4.0.F125W\_orig\_wht.fits.gz: weight map
- cosmos\_3dhst\_v4.0\_f140w.tar
  - cosmos\_3dhst.v4.0.F140W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - cosmos\_3dhst.v4.0.F140W\_exp.fits.gz: exposure map
  - cosmos\_3dhst.v4.0.F140W\_nexp.fits.gz: number of exposures map
  - cosmos\_3dhst.v4.0.F140W\_orig\_sci.fits.gz: science image
  - cosmos\_3dhst.v4.0.F140W\_orig\_wht.fits.gz: weight map
- cosmos\_3dhst\_v4.0\_f160w.tar
  - cosmos\_3dhst.v4.0.F160W\_exp.fits.gz: exposure map
  - cosmos\_3dhst.v4.0.F160W\_nexp.fits.gz: number of exposures map
  - cosmos\_3dhst.v4.0.F160W\_orig\_sci.fits.gz: science image
  - cosmos\_3dhst.v4.0.F160W\_orig\_wht.fits.gz: weight map
- cosmos\_3dhst\_v4.0\_f606w.tar
  - cosmos\_3dhst.v4.0.F606W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - cosmos\_3dhst.v4.0.F606W\_orig\_sci.fits.gz: science image
  - cosmos\_3dhst.v4.0.F606W\_orig\_wht.fits.gz: weight map
- cosmos\_3dhst\_v4.0\_f814w.tar

- cosmos\_3dhst.v4.0.F814W\_conv\_sci.fits.gz: science image psf-matched to F160W
- cosmos\_3dhst.v4.0.F814W\_orig\_sci.fits.gz: science image
- cosmos\_3dhst.v4.0.F814W\_orig\_wht.fits.gz: weight map

## 4.3 GOODS-N

## • goodsn\_3dhst\_v4.0\_f125w.tar

- goodsn\_3dhst.v4.0.F125W\_conv\_sci.fits.gz: science image psf-matched to F160W
- goodsn\_3dhst.v4.0.F125W\_exp.fits.gz: exposure map
- goodsn\_3dhst.v4.0.F125W\_nexp.fits.gz: number of exposures map
- goodsn\_3dhst.v4.0.F125W\_orig\_sci.fits.gz: science image
- goodsn\_3dhst.v4.0.F125W\_orig\_wht.fits.gz: weight map
- goodsn\_3dhst\_v4.0\_f140w.tar
  - goodsn\_3dhst.v4.0.F140W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - goodsn\_3dhst.v4.0.F140W\_exp.fits.gz: exposure map
  - goodsn\_3dhst.v4.0.F140W\_nexp.fits.gz: number of exposures map
  - goodsn\_3dhst.v4.0.F140W\_orig\_sci.fits.gz: science image
  - goodsn\_3dhst.v4.0.F140W\_orig\_wht.fits.gz
- goodsn\_3dhst\_v4.0\_f160w.tar
  - goodsn\_3dhst.v4.0.F160W\_exp.fits.gz: exposure map
  - goodsn\_3dhst.v4.0.F160W\_nexp.fits.gz: number of exposures map
  - goodsn\_3dhst.v4.0.F160W\_orig\_sci.fits.gz: science image
  - goodsn\_3dhst.v4.0.F160W\_orig\_wht.fits.gz: weight map
- goodsn\_3dhst\_v4.0\_f435w.tar
  - goodsn\_3dhst.v4.0.F435W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - goodsn\_3dhst.v4.0.F435W\_orig\_sci.fits.gz: science image
  - goodsn\_3dhst.v4.0.F435W\_orig\_wht.fits.gz: weight map
- goodsn\_3dhst\_v4.0\_f606w.tar
  - goodsn\_3dhst.v4.0.F606W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - goodsn\_3dhst.v4.0.F606W\_orig\_sci.fits.gz: science image
  - goodsn\_3dhst.v4.0.F606W\_orig\_wht.fits.gz: weight map
- goodsn\_3dhst\_v4.0\_f775w.tar
  - goodsn\_3dhst.v4.0.F775W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - goodsn\_3dhst.v4.0.F775W\_orig\_sci.fits.gz: science image
  - goodsn\_3dhst.v4.0.F775W\_orig\_wht.fits.gz: weight map
- goodsn\_3dhst\_v4.0\_f850lp.tar

- goodsn\_3dhst.v4.0.F850LP\_conv\_sci.fits.gz: science image psf-matched to F160W
- goodsn\_3dhst.v4.0.F850LP\_orig\_sci.fits.gz: science image
- goodsn\_3dhst.v4.0.F850LP\_orig\_wht.fits.gz: weight map

## 4.4 GOODS-S

### goodss\_3dhst\_v4.0\_f125w.tar

- goodss\_3dhst.v4.0.F125W\_conv\_sci.fits.gz: science image psf-matched to F160W
- goodss\_3dhst.v4.0.F125W\_exp.fits.gz: exposure map
- goodss\_3dhst.v4.0.F125W\_nexp.fits.gz: number of exposures map
- goodss\_3dhst.v4.0.F125W\_orig\_sci.fits.gz: science image
- goodss\_3dhst.v4.0.F125W\_orig\_wht.fits.gz: weight map

### goodss\_3dhst\_v4.0\_f140w.tar

- goodss\_3dhst.v4.0.F140W\_conv\_sci.fits.gz: science image psf-matched to F160W
- goodss\_3dhst.v4.0.F140W\_exp.fits.gz: exposure map
- goodss\_3dhst.v4.0.F140W\_nexp.fits.gz: number of exposures map
- goodss\_3dhst.v4.0.F140W\_orig\_sci.fits.gz: science image
- goodss\_3dhst.v4.0.F140W\_orig\_wht.fits.gz: weight map

### goodss\_3dhst\_v4.0\_f160w.tar

- goodss\_3dhst.v4.0.F160W\_exp.fits.gz: exposure map
- goodss\_3dhst.v4.0.F160W\_nexp.fits.gz: number of exposures map
- goodss\_3dhst.v4.0.F160W\_orig\_sci.fits.gz: science image
- goodss\_3dhst.v4.0.F160W\_orig\_wht.fits.gz: weight map

### goodss\_3dhst\_v4.0\_f435w.tar

- goodss\_3dhst.v4.0.F435W\_conv\_sci.fits.gz: science image psf-matched to F160W
- goodss\_3dhst.v4.0.F435W\_orig\_sci.fits.gz: science image
- goodss\_3dhst.v4.0.F435W\_orig\_wht.fits.gz: weight map
- goodss\_3dhst\_v4.0\_f606w.tar
  - goodss\_3dhst.v4.0.F606W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - goodss\_3dhst.v4.0.F606W\_orig\_sci.fits.gz: science image
  - goodss\_3dhst.v4.0.F606W\_orig\_wht.fits.gz: weight map
- goodss\_3dhst\_v4.0\_f606wcand.tar
  - goodss\_3dhst.v4.0.F606Wcand\_conv\_sci.fits.gz: science image psf-matched to F160W
  - goodss\_3dhst.v4.0.F606Wcand\_orig\_sci.fits.gz: science image
  - goodss\_3dhst.v4.0.F606Wcand\_orig\_wht.fits.gz: weight map
- goodss\_3dhst\_v4.0\_f775w.tar

- goodss\_3dhst.v4.0.F775W\_conv\_sci.fits.gz: science image psf-matched to F160W
- goodss\_3dhst.v4.0.F775W\_orig\_sci.fits.gz: science image
- goodss\_3dhst.v4.0.F775W\_orig\_wht.fits.gz: weight map
- goodss\_3dhst\_v4.0\_f814wcand.tar
  - goodss\_3dhst.v4.0.F814Wcand\_conv\_sci.fits.gz: science image psf-matched to F160W
  - goodss\_3dhst.v4.0.F814Wcand\_orig\_sci.fits.gz: science image
  - goodss\_3dhst.v4.0.F814Wcand\_orig\_wht.fits.gz: weight map
- goodss\_3dhst\_v4.0\_f850lp.tar
  - goodss\_3dhst.v4.0.F850LP\_conv\_sci.fits.gz: science image psf-matched to F160W
  - goodss\_3dhst.v4.0.F850LP\_orig\_sci.fits.gz: science image
  - goodss\_3dhst.v4.0.F850LP\_orig\_wht.fits.gz: weight map
- goodss\_3dhst\_v4.0\_f850lpcand.tar
  - goodss\_3dhst.v4.0.F850LPcand\_conv\_sci.fits.gz: science image psf-matched to F160W
  - goodss\_3dhst.v4.0.F850LPcand\_orig\_sci.fits.gz: science image
  - goodss\_3dhst.v4.0.F850LPcand\_orig\_wht.fits.gz: weight map

# 4.5 UDS

- uds\_3dhst\_v4.0\_f125w.tar
  - uds\_3dhst.v4.0.F125W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - uds\_3dhst.v4.0.F125W\_exp.fits.gz: exposure map
  - uds\_3dhst.v4.0.F125W\_nexp.fits.gz: number of exposures map
  - uds\_3dhst.v4.0.F125W\_orig\_sci.fits.gz: science image
  - uds\_3dhst.v4.0.F125W\_orig\_wht.fits.gz: weight map
- uds\_3dhst\_v4.0\_f140w.tar
  - uds\_3dhst.v4.0.F140W\_conv\_sci.fits.gz: science image psf-matched to F160W
  - uds\_3dhst.v4.0.F140W\_exp.fits.gz: exposure map
  - uds\_3dhst.v4.0.F140W\_nexp.fits.gz: number of exposures map
  - uds\_3dhst.v4.0.F140W\_orig\_sci.fits.gz: science image
  - uds\_3dhst.v4.0.F140W\_orig\_wht.fits.gz: weight map

## uds\_3dhst\_v4.0\_f160w.tar

- uds\_3dhst.v4.0.F160W\_exp.fits.gz: exposure map
- uds\_3dhst.v4.0.F160W\_nexp.fits.gz: number of exposures map
- uds\_3dhst.v4.0.F160W\_orig\_sci.fits.gz: science image
- uds\_3dhst.v4.0.F160W\_orig\_wht.fits.gz: weight map
- uds\_3dhst\_v4.0\_f606w.tar

- uds\_3dhst.v4.0.F606W\_conv\_sci.fits.gz: science image psf-matched to F160W
- uds\_3dhst.v4.0.F606W\_orig\_sci.fits.gz: science image
- uds\_3dhst.v4.0.F606W\_orig\_wht.fits.gz: weight map

## uds\_3dhst\_v4.0\_f814w.tar

- uds\_3dhst.v4.0.F814W\_conv\_sci.fits.gz: science image psf-matched to F160W
- uds\_3dhst.v4.0.F814W\_orig\_sci.fits.gz: science image
- uds\_3dhst.v4.0.F814W\_orig\_wht.fits.gz: weight map

# **ANCILLARY MOSAICS**

All ancillary mosaics used to produce the photometric are also available for download. A science and a weight image is available for each filter. These can be downloaded as tar balls which contains the archived (.gz) images. Below we list the images available for each field.

See Section 2.5 above and Table 3 in Skelton et al. (2014) for the sources and appropriate citations for these images.

# 5.1 AEGIS

- AEGIS\_CH1\_SEDS.tar
  - AEGIS\_CH1\_SEDS\_exp.fits.gz: weight map
  - AEGIS\_CH1\_SEDS\_sci.fits.gz: science image
- AEGIS\_CH2\_SEDS.tar
  - AEGIS\_CH2\_SEDS\_exp.fits.gz: weight map
  - AEGIS\_CH2\_SEDS\_sci.fits.gz: science image
- AEGIS\_CH3.tar
  - AEGIS\_CH3\_exp.fits.gz: weight map
  - AEGIS\_CH3\_sci.fits.gz: science image
- AEGIS\_CH4.tar
  - AEGIS\_CH4\_exp.fits.gz: weight map
  - AEGIS\_CH4\_sci.fits.gz: science image
- AEGIS\_G.tar
  - AEGIS\_G\_exp.fits.gz: weight map
  - AEGIS\_G\_sci.fits.gz: science image
- AEGIS\_H.tar
  - AEGIS\_H\_exp.fits.gz: weight map
  - AEGIS\_H\_sci.fits.gz: science image
- AEGIS\_H1.tar
  - AEGIS\_H1\_exp.fits.gz: weight map
  - AEGIS\_H1\_sci.fits.gz: science image

- AEGIS\_H2.tar
  - AEGIS\_H2\_exp.fits.gz: weight map
  - AEGIS\_H2\_sci.fits.gz: science image
- AEGIS\_I.tar
  - AEGIS\_I\_exp.fits.gz: weight map
  - AEGIS\_I\_sci.fits.gz: science image
- AEGIS\_J.tar
  - AEGIS\_J\_exp.fits.gz: weight map
  - AEGIS\_J\_sci.fits.gz: science image
- AEGIS\_J1.tar
  - AEGIS\_J1\_exp.fits.gz: weight map
  - AEGIS\_J1\_sci.fits.gz: science image
- AEGIS\_J2.tar
  - AEGIS\_J2\_exp.fits.gz: weight map
  - AEGIS\_J2\_sci.fits.gz: science image
- AEGIS\_J3.tar
  - AEGIS\_J3\_exp.fits.gz: weight map
  - AEGIS\_J3\_sci.fits.gz: science image
- AEGIS\_K.tar
  - AEGIS\_K\_exp.fits.gz : weight map
  - AEGIS\_K\_sci.fits.gz : science image
- AEGIS\_Ks.tar
  - AEGIS\_Ks\_exp.fits.gz: weight map
  - AEGIS\_Ks\_sci.fits.gz: science image
- AEGIS\_R.tar
  - AEGIS\_R\_exp.fits.gz: weight map
  - AEGIS\_R\_sci.fits.gz: science image
- AEGIS\_U.tar
  - AEGIS\_U\_exp.fits.gz: weight map
  - AEGIS\_U\_sci.fits.gz: science image
- AEGIS\_Z.tar
  - AEGIS\_Z\_exp.fits.gz: weight map
  - AEGIS\_Z\_sci.fits.gz: science image

# 5.2 COSMOS

- cosmos\_B.tar
  - cosmos\_B\_exp.fits.gz: weight map
  - cosmos\_B\_sci.fits.gz: science image
- cosmos\_CH1\_SEDS.tar
  - cosmos\_CH1\_SEDS\_exp.fits.gz: weight map
  - cosmos\_CH1\_SEDS\_sci.fits.gz: science image
- cosmos\_CH2\_SEDS.tar
  - cosmos\_CH2\_SEDS\_exp.fits.gz: weight map
  - cosmos\_CH2\_SEDS\_sci.fits.gz: science image
- cosmos\_CH3.tar
  - cosmos\_CH3\_exp.fits.gz: weight map
  - cosmos\_CH3\_sci.fits.gz: science image
- cosmos\_CH4.tar
  - cosmos\_CH4\_exp.fits.gz: weight map
  - cosmos\_CH4\_sci.fits.gz: science image
- cosmos\_G.tar
  - cosmos\_G\_exp.fits.gz: weight map
  - cosmos\_G\_sci.fits.gz: science image
- cosmos\_H.tar
  - cosmos\_H\_exp.fits.gz: weight map
  - cosmos\_H\_sci.fits.gz: science image
- cosmos\_H1.tar
  - cosmos\_H1\_exp.fits.gz: weight map
  - cosmos\_H1\_sci.fits.gz: science image
- cosmos\_H2.tar
  - cosmos\_H2\_exp.fits.gz: weight map
  - cosmos\_H2\_sci.fits.gz: science image
- cosmos\_I.tar
  - cosmos\_I\_exp.fits.gz: weight map
  - cosmos\_I\_sci.fits.gz: science image
- cosmos\_IA427.tar
  - cosmos\_IA427\_exp.fits.gz: weight map
  - cosmos\_IA427\_sci.fits.gz: science image
- cosmos\_IA464.tar

- cosmos\_IA464\_exp.fits.gz: weight map
- cosmos\_IA464\_sci.fits.gz: science image
- cosmos\_IA484.tar
  - cosmos\_IA484\_exp.fits.gz: weight map
  - cosmos\_IA484\_sci.fits.gz: science image
- cosmos\_IA505.tar
  - cosmos\_IA505\_exp.fits.gz: weight map
  - cosmos\_IA505\_sci.fits.gz: science image
- cosmos\_IA527.tar
  - cosmos\_IA527\_exp.fits.gz: weight map
  - cosmos\_IA527\_sci.fits.gz: science image
- cosmos\_IA574.tar
  - cosmos\_IA574\_exp.fits.gz: weight map
  - cosmos\_IA574\_sci.fits.gz: science image
- cosmos\_IA624.tar
  - cosmos\_IA624\_exp.fits.gz: weight map
  - cosmos\_IA624\_sci.fits.gz: science image
- cosmos\_IA679.tar
  - cosmos\_IA679\_exp.fits.gz: weight map
  - cosmos\_IA679\_sci.fits.gz: science image
- cosmos\_IA709.tar
  - cosmos\_IA709\_exp.fits.gz: weight map
  - cosmos\_IA709\_sci.fits.gz: science image
- cosmos\_IA738.tar
  - cosmos\_IA738\_exp.fits.gz: weight map
  - cosmos\_IA738\_sci.fits.gz: science image
- cosmos\_IA767.tar
  - cosmos\_IA767\_exp.fits.gz: weight map
  - cosmos\_IA767\_sci.fits.gz: science image
- cosmos\_IA827.tar
  - cosmos\_IA827\_exp.fits.gz: weight map
  - cosmos\_IA827\_sci.fits.gz: science image
- cosmos\_Ip.tar
  - cosmos\_Ip\_exp.fits.gz: weight map
  - cosmos\_Ip\_sci.fits.gz: science image
- cosmos\_J.tar

- cosmos\_J\_exp.fits.gz: weight map
- cosmos\_J\_sci.fits.gz: science image
- cosmos\_J1.tar
  - cosmos\_J1\_exp.fits.gz: weight map
  - cosmos\_J1\_sci.fits.gz: science image
- cosmos\_J2.tar
  - cosmos\_J2\_exp.fits.gz: weight map
  - cosmos\_J2\_sci.fits.gz: science image
- cosmos\_J3.tar
  - cosmos\_J3\_exp.fits.gz: weight map
  - cosmos\_J3\_sci.fits.gz: science image
- cosmos\_K.tar
  - cosmos\_K\_exp.fits.gz: weight map
  - cosmos\_K\_sci.fits.gz: science image
- cosmos\_Ks.tar
  - cosmos\_Ks\_exp.fits.gz: weight map
  - cosmos\_Ks\_sci.fits.gz: science image
- cosmos\_R.tar
  - cosmos\_R\_exp.fits.gz: weight map
  - cosmos\_R\_sci.fits.gz: science image
- cosmos\_Rp.tar
  - cosmos\_Rp\_exp.fits.gz: weight map
  - cosmos\_Rp\_sci.fits.gz: science image
- cosmos\_U.tar
  - cosmos\_U\_exp.fits.gz: weight map
  - cosmos\_U\_sci.fits.gz: science image
- cosmos\_UVISTA\_H.tar
  - cosmos\_UVISTA\_H\_sci.fits.gz: science image
  - cosmos\_UVISTA\_H\_wht.fits.gz: weight map
- cosmos\_UVISTA\_J.tar
  - cosmos\_UVISTA\_J\_sci.fits.gzv: science image
  - cosmos\_UVISTA\_J\_wht.fits.gz: weight map
- cosmos\_UVISTA\_Ks.tar
  - cosmos\_UVISTA\_Ks\_sci.fits.gz: science image
  - cosmos\_UVISTA\_Ks\_wht.fits.gz: weight map
- cosmos\_UVISTA\_Y.tar

- cosmos\_UVISTA\_Y\_sci.fits.gz: science image
- cosmos\_UVISTA\_Y\_wht.fits.gz: weight map
- cosmos\_V.tar
  - cosmos\_V\_exp.fits.gz: weight map
  - cosmos\_V\_sci.fits.gz: science image
- cosmos\_Z.tar
  - cosmos\_Z\_exp.fits.gz: weight map
  - cosmos\_Z\_sci.fits.gz: science image
- cosmos\_Zp.tar
  - cosmos\_Zp\_exp.fits.gz: weight map
  - cosmos\_Zp\_sci.fits.gz: science image

## 5.3 GOODS-N

- GOODS-N\_HDF.B.tar
  - GOODS-N\_HDF.B\_exp.fits.gz: weight map
  - GOODS-N\_HDF.B\_sci.fits.gz: science image
- GOODS-N\_HDF.I.tar
  - GOODS-N\_HDF.I\_exp.fits.gz: weight map
  - GOODS-N\_HDF.I\_sci.fits.gz: science image
- GOODS-N\_HDF.R.tar
  - GOODS-N\_HDF.R\_exp.fits.gz: weight map
  - GOODS-N\_HDF.R\_sci.fits.gz: science image
- GOODS-N\_HDF.V0201.tar
  - GOODS-N\_HDF.V0201\_exp.fits.gz: weight map
  - GOODS-N\_HDF.V0201\_sci.fits.gz
- GOODS-N\_HDF.Z.tar
  - GOODS-N\_HDF.Z\_exp.fits.gz: weight map
  - GOODS-N\_HDF.Z\_sci.fits.gz: science image
- GOODS-N\_SEDS1.tar
  - GOODS-N\_SEDS1\_exp.fits.gz: weight map
  - GOODS-N\_SEDS1\_sci.fits.gz: science image
- GOODS-N\_SEDS2.tar
  - GOODS-N\_SEDS2\_exp.fits.gz: weight map
  - GOODS-N\_SEDS2\_sci.fits.gz: science image
- GOODS-N\_convH.tar

- GOODS-N\_convH\_exp.fits.gz: weight map
- GOODS-N\_convH\_sci.fits.gz: science image
- GOODS-N\_convJ.tar
  - GOODS-N\_convJ\_exp.fits.gz: weight map
  - GOODS-N\_convJ\_sci.fits.gz: science image
- GOODS-N\_convK.tar
  - GOODS-N\_convK\_exp.fits.gz: weight map
  - GOODS-N\_convK\_sci.fits.gz: science image
- GOODS-N\_hdfnU.tar
  - GOODS-N\_hdfnU\_exp.fits.gz: weight map
  - GOODS-N\_hdfnU\_sci.fits.gz: science image
- GOODS-N\_irac3.tar
  - GOODS-N\_irac3\_s1\_exp.fits.gz: weight map
  - GOODS-N\_irac3\_s2\_exp.fits.gz: science image
  - GOODS-N\_irac3\_s1\_sci.fits.gz: weight map
  - GOODS-N\_irac3\_s2\_sci.fits.gz: science image
- GOODS-N\_irac4.tar
  - GOODS-N\_irac4\_s1\_exp.fits.gz: weight map
  - GOODS-N\_irac4\_s2\_exp.fits.gz: weight map
  - GOODS-N\_irac4\_s1\_sci.fits.gz: science image
  - GOODS-N\_irac4\_s2\_sci.fits.gz: science image
- GOODS-N\_lrisG.tar
  - GOODS-N\_lrisG\_sci.fits.gz: science image
  - GOODS-N\_lrisG\_unity\_exp.fits.gz: weight map
- GOODS-N\_lrisRs.tar
  - GOODS-N\_lrisRs\_sci.fits.gz: science image
  - GOODS-N\_lrisRs\_unity\_exp.fits.gz: weight map

# 5.4 GOODS-S

- GOODS-S\_IA427.tar
  - GOODS-S\_IA427\_exp.fits.gz: weight map
  - GOODS-S\_IA427\_sci.fits.gz: science image
- GOODS-S\_IA445.tar
  - GOODS-S\_IA445\_exp.fits.gz: weight map
  - GOODS-S\_IA445\_sci.fits.gz: science image

- GOODS-S\_IA464.tar
  - GOODS-S\_IA464\_exp.fits.gz: weight map
  - GOODS-S\_IA464\_sci.fits.gz: science image
- GOODS-S\_IA484.tar
  - GOODS-S\_IA484\_exp.fits.gz: weight map
  - GOODS-S\_IA484\_sci.fits.gz: science image
- GOODS-S\_IA505.tar
  - GOODS-S\_IA505\_exp.fits.gz: weight map
  - GOODS-S\_IA505\_sci.fits.gz: science image
- GOODS-S\_IA527.tar
  - GOODS-S\_IA527\_exp.fits.gz: weight map
  - GOODS-S\_IA527\_sci.fits.gz: science image
- GOODS-S\_IA550.tar
  - GOODS-S\_IA550\_exp.fits.gz: weight map
  - GOODS-S\_IA550\_sci.fits.gz: science image
- GOODS-S\_IA574.tar
  - GOODS-S\_IA574\_exp.fits.gz: weight map
  - GOODS-S\_IA574\_sci.fits.gz: science image
- GOODS-S\_IA598.tar
  - GOODS-S\_IA598\_exp.fits.gz: weight map
  - GOODS-S\_IA598\_sci.fits.gz: science image
- GOODS-S\_IA624.tar
  - GOODS-S\_IA624\_exp.fits.gz: weight map
  - GOODS-S\_IA624\_sci.fits.gz: science image
- GOODS-S\_IA651.tar
  - GOODS-S\_IA651\_exp.fits.gz: weight map
  - GOODS-S\_IA651\_sci.fits.gz: science image
- GOODS-S\_IA679.tar
  - GOODS-S\_IA679\_exp.fits.gz: weight map
  - GOODS-S\_IA679\_sci.fits.gz: science image
- GOODS-S\_IA709.tar
  - GOODS-S\_IA709\_exp.fits.gz: weight map
  - GOODS-S\_IA709\_sci.fits.gz: science image
- GOODS-S\_IA738.tar
  - GOODS-S\_IA738\_exp.fits.gz: weight map
  - GOODS-S\_IA738\_sci.fits.gz: science image

- GOODS-S\_IA767.tar
  - GOODS-S\_IA767\_exp.fits.gz: weight map
  - GOODS-S\_IA767\_sci.fits.gz: science image
- GOODS-S\_IA797.tar
  - GOODS-S\_IA797\_exp.fits.gz: weight map
  - GOODS-S\_IA797\_sci.fits.gz: science image
- GOODS-S\_IA827.tar
  - GOODS-S\_IA827\_exp.fits.gz: weight map
  - GOODS-S\_IA827\_sci.fits.gz: science image
- GOODS-S\_IA856.tar
  - GOODS-S\_IA856\_exp.fits.gz: weight map
  - GOODS-S\_IA856\_sci.fits.gz: science image
- GOODS-S\_R.tar
  - GOODS-S\_R\_exp.fits.gz: weight map
  - GOODS-S\_R\_sci.fits.gz: science image
- GOODS-S\_SEDS1.tar
  - GOODS-S\_SEDS1\_cov.fits.gz: weight map
  - GOODS-S\_SEDS1\_sci\_sub.fits.gz: science image
- GOODS-S\_SEDS2.tar
  - GOODS-S\_SEDS2\_cov.fits.gz: weight map
  - GOODS-S\_SEDS2\_sci\_sub.fits.gz: science image
- GOODS-S\_U.tar
  - GOODS-S\_U\_exp.fits.gz: weight map
  - GOODS-S\_U\_sci.fits.gz: science image
- GOODS-S\_WFI\_B.tar
  - GOODS-S\_WFI\_B\_exp.fits.gz: weight map
  - GOODS-S\_WFI\_B\_sci.fits.gz: science image
- GOODS-S\_WFI\_I.tar
  - GOODS-S\_WFI\_I\_exp.fits.gz: weight map
  - GOODS-S\_WFI\_I\_sci.fits.gz: science image
- GOODS-S\_WFI\_Rc.tar
  - GOODS-S\_WFI\_Rc\_exp.fits.gz: weight map
  - GOODS-S\_WFI\_Rc\_sci.fits.gz: science image
- GOODS-S\_WFI\_U38.tar
  - GOODS-S\_WFI\_U38\_exp.fits.gz: weight map
  - GOODS-S\_WFI\_U38\_sci.fits.gz: science image

- GOODS-S\_WFI\_V.tar
  - GOODS-S\_WFI\_V\_exp.fits.gz: weight map
  - GOODS-S\_WFI\_V\_sci.fits.gz: science image
- GOODS-S\_convH.tar
  - GOODS-S\_convH\_exp.fits.gz: weight map
  - GOODS-S\_convH\_sci.fits.gz: science image
- GOODS-S\_convJ.tar
  - GOODS-S\_convJ\_exp.fits.gz: weight map
  - GOODS-S\_convJ\_sci.fits.gz: science image
- GOODS-S\_convK.tar
  - GOODS-S\_convK\_exp.fits.gz: weight map
  - GOODS-S\_convK\_sci.fits.gz: science image
- GOODS-S\_irac3.tar
  - GOODS-S\_irac3\_s1\_exp.fits.gz: weight map
  - GOODS-S\_irac3\_s2\_exp.fits.gz: weight map
  - GOODS-S\_irac3\_s1\_sci.fits.gz: science image
  - GOODS-S\_irac3\_s2\_sci.fits.gz: science image
- GOODS-S\_irac4.tar
  - GOODS-S\_irac4\_s1\_exp.fits.gz: weight map
  - GOODS-S\_irac4\_s2\_exp.fits.gz: weight map
  - GOODS-S\_irac4\_s1\_sci.fits.gz: science image
  - GOODS-S\_irac4\_s2\_sci.fits.gz: science image
- GOODS-S\_tenisJ.tar
  - GOODS-S\_tenisJ\_exp.fits.gz: weight map
  - GOODS-S\_tenisJ\_sci.fits.gz: science image
- GOODS-S\_tenisK.tar
  - GOODS-S\_tenisK\_exp.fits.gz: weight map
  - GOODS-S\_tenisK\_sci.fits.gz: science image
- UDS\_SEDS1.tar
  - UDS\_SEDS1\_exp.fits.gz: weight map
  - UDS\_SEDS1\_sci.fits.gz: science image

## 5.5 UDS

- UDS\_SEDS2.tar
  - UDS\_SEDS2\_exp.fits.gz: weight map

- UDS\_SEDS2\_sci.fits.gz: science image
- UDS\_SXDS\_B.tar
  - UDS\_SXDS\_B\_exp.fits.gz: weight map
  - UDS\_SXDS\_B\_sci.fits.gz: science image
- UDS\_SXDS\_R.tar
  - UDS\_SXDS\_R\_exp.fits.gz: weight map
  - UDS\_SXDS\_R\_sci.fits.gz: science image
- UDS\_SXDS\_V.tar
  - UDS\_SXDS\_V\_exp.fits.gz: weight map
  - UDS\_SXDS\_V\_sci.fits.gz: science image
- UDS\_SXDS\_i.tar
  - UDS\_SXDS\_i\_exp.fits.gz: weight map
  - UDS\_SXDS\_i\_sci.fits.gz: science image
- UDS\_SXDS\_z.tar
  - UDS\_SXDS\_z\_exp.fits.gz: weight map
  - UDS\_SXDS\_z\_sci.fits.gz: science image
- UDS\_U.tar
  - UDS\_U\_exp.fits.gz: weight map
  - UDS\_U\_sci.fits.gz: science image
- UDS\_UKIDSS\_H.tar
  - UDS\_UKIDSS\_H\_exp.fits.gz: weight map
  - UDS\_UKIDSS\_H\_sci.fits.gz: science image
- UDS\_UKIDSS\_J.tar
  - UDS\_UKIDSS\_J\_exp.fits.gz: weight map
  - UDS\_UKIDSS\_J\_sci.fits.gz: science image
- UDS\_UKIDSS\_K.tar
  - UDS\_UKIDSS\_K\_exp.fits.gz: weight map
  - UDS\_UKIDSS\_K\_sci.fits.gz: science image
- UDS\_irac3.tar
  - UDS\_irac3\_exp.fits.gz: weight map
  - UDS\_irac3\_sci.fits.gz: science image
- UDS\_irac4.tar
  - UDS\_irac4\_exp.fits.gz: weight map
  - UDS\_irac4\_sci.fits.gz: science image