The Spitzer Space Telescope’s New View of the Milky Way...

...And Its Neighbors

Copyright: Miroslav Druckmuller

Reionization to Exoplanets: Spitzer’s Growing Legacy • 28 Oct 2009 • Robert Benjamin—U Wisconsin
The Spitzer Space Telescope’s New View of the Milky Way…

…And Its Neighbors

Copyright: Miroslav Druckmuller

Exoplanet Location to Exoplanets: Spitzer’s Growing Legacy • 28 Oct 2009 • Robert Benjamin—U Wisconsin
Overview of Talk

1. Advantages of Spitzer Space Telescope
2. SAGE-LMC highlights
3. Formation of Massive Stars in the Galaxy
4. Galactic Structure
5. A Galactic To-Do List

Before:
Fig 1
Benjamin et al 2003,
PASP, 115, 93

160 papers based on GLIMPSE data alone
(51 team, 109 others)

Milky Way
IRAC campaigns
GLIMPSE 400 h
GLIMPSE II 144 h
GLIMPSE 3D 255 h
GALCEN 15 h
VelaCarina 119 h
Subtotal 933 h
MIPS campaigns
MIPSGAL 417 h
MIPSGAL II 22 h
MIPSGALCEN 18 h
SMOG 149 h
Subtotal 606 h
SAGE-LMC 511 h
SAGE-SMC 285 h
SAGE-SPEC 225 h
TOTAL 2560 h
+ GLIMPSE360 1980 h

Reionization to Exoplanets: Spitzer’s Growing Legacy • 28 Oct 2009 • Robert Benjamin—U Wisconsin
Overview of Talk

1. Advantages of Spitzer Space Telescope
2. SAGE-LMC highlights
3. Formation of Massive Stars in the Galaxy
4. Galactic Structure
5. A Galactic To-Do List

After:
Fig 15 (by R. Hurt)

160 papers based on GLIMPSE data alone
(51 team, 109 others)

Milky Way

IRAC campaigns
GLIMPSE 400 h
GLIMPSE II 144 h
GLIMPSE 3D 255 h
GALCEN 15 h
VelaCarina 119 h

Subtotal
933 h

MIPS campaigns
MIPSGAL 417 h
MIPSGAL II 22 h
MIPSGALCEN 18 h
SMOG 149 h

Subtotal
606 h

SAGE-LMC 511 h
SAGE-SMC 285 h
SAGE-SPEC 225 h

TOTAL 2560 h
+ GLIMPSE360 1980 h
I. Spitzer ST
Advantages

Great sensitivity
“2-sec” exposures
High ang. resolution
2’’ matches optical
Low extinction
$A_{[4.5]} \sim 0.04A_V$

Optical
BVR
WIYN 0.9m

Near IR
JHK (15 mag)
2MASS

Mid-IR
[3.6],[4.5],[8.0]
Spitzer/GLIMPSE

$l=28.5$
$b=-0.5$
1. Spitzer ST Advantages

Great sensitivity
“2-sec” exposures
High ang. resolution
2” matches optical
Low extinction
$A_{[4.5]} \sim 0.04A_V$

Optical
BVR
WIYN 0.9m

Near IR
JHK (15 mag)
2MASS

Mid-IR
$[3.6],[4.5],[8.0]$
Spitzer/GLIMPSE

l=28.5
b=-0.5
I. Spitzer ST Advantages

Great sensitivity
“2-sec” exposures
High ang. resolution
2” matches optical
Low extinction
$A_{[4.5]} \sim 0.04A_V$

Optical
BVR
WIYN 0.9m

Near IR
JHK (15 mag)
2MASS

Mid-IR
[3.6],[4.5],[8.0]
Spitzer/GLIMPSE

$l=28.5$
$b=-0.5$
I. Spitzer ST
Advantages

Great sensitivity
“2-sec” exposures
High ang. resolution
2” matches optical
Low extinction
$A_{[4.5]} \approx 0.04A_V$

Optical
BVR
WIYN 0.9m

Near IR
JHK (15 mag)
2MASS

Mid-IR
[3.6],[4.5],[8.0]
Spitzer/GLIMPSE

l=28.5
b=-0.5

The mid-infrared (3-5 μm) is the ideal wavelength window for star counts.

- Fluxes for giants, which dominate number counts for an extinction-free galaxy, peak in the near IR.
- Mid IR bands provide the best combination of low extinction and low diffuse emission.

One caveat: Mid IR colors of ordinary stars (dwarfs/giants) are all about zero, since mid IR is on the Rayleigh-Jeans tail.

Longer wavelength bands (8-24-70 μm) are optimum for detecting dust emission, and cold or dust-enshrouded objects, particular massive YSOs.
2. Surveying the Agents of Galaxy Evolution (SAGE)
Tracing the lifecycle of baryonic matter via dust emission in the Magellanic Clouds (http://sage.stsci.edu/)

SAGE- Large Magellanic Cloud
SAGE-LMC
Meixner et al. 2006 AJ, 132, 2268

SAGE-Spectroscopy of LMC
SAGE-Spec
Kemper et al. submitted

SAGE - Small Magellanic Cloud
SAGE-SMC
Gordon et al. in prep.
See poster!

Slide from M. Meixner
2. How much mass is currently in the ISM of LMC?

\[\sim 10^9 \, M_\odot \]

Map based on MIPS 160 um & IRAS 100 um — *unbiased* tracer of ISM

Sees twice as much mass than seen in gas tracers alone (HI 21 cm + CO J=1-0)

“Excess ISM” Color: $N_H \times 10^{22} \, \text{H/cm}^2$ Contours: HI

Slide from M. Meixner

Reionization to Exoplanets: Spitzer’s Growing Legacy • 28 Oct 2009 • Robert Benjamin—U Wisconsin
2. What is the galaxy-wide star formation rate of the LMC?

Bottom-up YSO count estimate >0.1 M_{sol} /yr

Slide from M. Meixner
2. How much mass is injected by evolved stellar winds?

LMC Asymptotic Giant Branch (AGB) stars

- Dust: $2.74 \times 10^{-5} \, M_\odot \, yr^{-1}$
- Gas: $6 - 13 \times 10^{-3} \, M_\odot \, yr^{-1}$

Blum, Mould, Olsen et al. 2006
AJ, 132, 2034

Srinivasan, Meixner, Leitherer et al. 2009
AJ, 137, 4810

Slide from M. Meixner
3. Formation of Massive Stars in the Galaxy

THE INFRARED MILKY WAY: GLIMPSE (3.6 - 8.0 microns)

Reionization to Exoplanets: Spitzer's Growing Legacy • 28 Oct 2009 • Robert Benjamin—U Wisconsin
3. Formation of Massive Stars in the Galaxy

THE INFRARED MILKY WAY: GLIMPSE/MIPSGAL (3.6–24 microns)

Reionization to Exoplanets: Spitzer’s Growing Legacy • 28 Oct 2009 • Robert Benjamin—U Wisconsin
3. Formation of Massive Stars in the Galaxy

GLIMPSE/MIPSGAL have greatly increased the number of rare objects, like distant open clusters and Wolf-Rayet stars.

However, their biggest impact has been in creating new classes of sources associated with high mass star formation.

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point sources</td>
<td>~5000</td>
<td>~11,000</td>
</tr>
<tr>
<td>HII regions</td>
<td>1174</td>
<td>?</td>
</tr>
<tr>
<td>Open clusters</td>
<td>76</td>
<td>168</td>
</tr>
<tr>
<td>PN</td>
<td>65</td>
<td>83</td>
</tr>
<tr>
<td>SNR</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>O/B stars</td>
<td>98</td>
<td>?</td>
</tr>
<tr>
<td>WR stars</td>
<td>50</td>
<td>97</td>
</tr>
<tr>
<td>Glob. Clusters</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AGB candidates</td>
<td>?</td>
<td>7,000</td>
</tr>
<tr>
<td>PAH Bubbles</td>
<td>—</td>
<td>600</td>
</tr>
<tr>
<td>HM* Outflows</td>
<td>?</td>
<td>~300</td>
</tr>
<tr>
<td>YSOs candidates</td>
<td>715</td>
<td>11,000</td>
</tr>
</tbody>
</table>

Background:
Vulpecula OB association (Billot)
3. Massive Star Formation: IRDCs

- Seen in silhouette against diffuse 8 µm background. None found at far kinematic distance.
- Very filamentary > 10:1
- Dense (> 10^5 cm^{-3}) and cold (< 20 K)
- Highest deuteration in the ISM NH$_2$D/NH$_3$ =0.1-0.7 (Pillai et al 2007)
- Embedded star formation found along clouds.
- Upcoming catalog/website doubles the number of clouds in GLIMPSE area, but has different selection criterion.
- Characterization still in progress.

Infrared Dark Cloud Catalogs

GLIMPSE: Fuller et al 2009, in prep

GLIMPSE/MIPSGAL image of IRDC G11.11-0.11
3. Massive Star Formation: YSOs

- 20,000 “red” sources [4.5]-[8.0] > 1 found using GLIMPSE/MIPSGAL
- About 40% AGBs (uniformly distributed), 60% YSOs (clumped)
- Many YSOs lie outside the “traditional” cores of massive star formation regions.

See Poster 4.5 (Hora et al) for 14,000 YSOs candidates in Cyg X!

These surveys allows us to find all sources destined to become O and B stars and redetermine the global star formation rate. It has become easier to find embedded O stars than bare ones!

Catalog: Robitaille et al 2008 AJ 136, 2413

www.astro.wisc.edu/protostars

YSOs near Galactic Center:
An et al. 2009 ApJL 702, 128
3. Massive Star Formation: EGOs

EGOs (Extended Green Objects):
Extended objects bright in [4.5] band

Emission due to shocked H$_2$ (v=0 – 0) S(9,10,11) lines and/or CO(v=1 –0) bandheads.

Presumably bipolar outflow from central massive protostar shocking into ISM.

Commonly found in infrared dark clouds.

Early stage of star formation where infalling envelope is too opaque or cool to excite PAH emission?

300 examples (not a complete catalog)
Cyganowski et al 2008, AJ 136, 2391
Methanol masers=EGOs?
3. Massive Star Formation: Bubbles

8 μm Bubbles: Most luminous coincide with radio HII regions. Probably produced by O and B stars at ages of 1 Myr, but stellar content still being analyzed. 90% smaller than 4’. 38% have broken morphology. Eccentric with peak at e~0.65

24 μm Bubbles: 226 disks, 112 rings, 54 with central 24 mm source, 24 two-lobed

Only 10% have 8μm counterpart!

8 μm Bubble Catalog (600):

Bubble Follow-up/Models:
Everett et al 2009, in prep

24 μm Bubble Catalog (400):
Carey et al 2009, in prep

MIPSGAL bubbles: See Poster 4.1 (Billot et al), 4.4 (Flagey et al)
Luminosities, sizes, energetics, relation to Galactic structure of star formation regions all depend on distance.

We need to get radial velocities of all these objects and use kinematic distances.
4. Galactic Structure

- VLBA parallax distance
- Kinematic distance

Problems with Kinematic Distances

- Many objects smaller than resolution of available CO-HI-RRL surveys. Needs dedicated follow-up.
- Kinematic distances are double valued in inner galaxy.
- Random velocity and uncertainties in rotation curves fits produce longitude-dependence spread in distances.
- Deviation from circular flows due to bar/spiral arms, which are the very features you want to map!

VLBA/VERA parallax distances to masers in SFR could lead to models for kinematic distance “correction” (Reid et al 2008, ApJ 700, 137)
4. Galactic Structure: GLIMPSE star count maps

Optical panorama courtesy of Axel Mellinger
“Historical” directions for spiral arm tangencies (Englmaier & Gerhard 1999) shown.
4. Galactic Structure: GLIMPSE star count maps

Optical panorama courtesy of Axel Mellinger
“Historical” directions for spiral arm tangencies (Englmaier & Gerhard 1999) shown.

Reionization to Exoplanets: Spitzer’s Growing Legacy • 28 Oct 2009 • Robert Benjamin—U Wisconsin
Star count density (all sources from 12th to 6th magnitude)

model $R_{\text{disk}} = 3.9 \pm 0.6 \text{ kpc}$ (Benjamin et al 2005)

Reionization to Exoplanets: Spitzer’s Growing Legacy • 28 Oct 2009 • Robert Benjamin—U Wisconsin
4. Galactic Structure: Dividing out the disk

- **Centaurus tangency in stellar disk**
- 30% excess at maximum
- Center at $l=307.4^\circ$
- $FWHM=4.4^\circ$
- $FWHM=460$ pc @ 6 kpc

- **Benjamin (2009)**

Reionization to Exoplanets: Spitzer’s Growing Legacy • 28 Oct 2009 • Robert Benjamin—U Wisconsin
4. Galactic Structure: Multi-λ Tracers of Tangencies
Common 0.5 - 2.0 M_\odot stars

Long lived -10% of MS lifetime

Tight luminosity function - L determined by He core mass at ignition

Absolute calibration – A few dozen RC giants have Hipparcos parallaxes.

Some concerns over age and metallicity effects (up to 0.3 mag), but these affect absolute calibration, not relative calibration.

$M_K=-1.62\pm0.03$ mag

$\Delta m_{\text{stat}} = 0.03 \rightarrow \Delta d/d = 1.3\%$

Isochrones of 1-5 M_\odot solar metallicity stars.

Note the red clump box starts to fill up at ~ 1 Gyr.
Fits of data to $n = n_0 (S/S_0)^{-\alpha}$ yield $\alpha_{avg} = 1.83 - 1.95$
4. Galactic Structure: Red Clump Mapping of Long Bar

Benjamin et al (2005)

Confusion limit

$R_{\text{bar}} = 4.4\pm0.5$ kpc

$\phi = 44\pm10^\circ$

Sun
4. Galactic Structure: Red Clump Mapping (λ Dependence)

Slope of (m vs $\log N$) $-1.0 < b < 1.0$
4. Galactic Structure: Red Clump Mapping (λ Dependence)

Slope of (m vs $\log N$) $-1.0 < b < 1.0$
4. Galactic Structure: Red Clump Mapping (λ Dependence)

Slope of (m vs $\log N$) $-1.0 < b < 1.0$
4. Galactic Structure: Red Clump Mapping

4. Galactic Structure: Red Clump Mapping
4. Galactic Structure: Red Clump Mapping
4. Galactic Structure: Comparison with Other Results

The GLIMPSE results were a confirmation of several previous group who detected the same structure in the midplane using near IR color-selected red clump giants (Hammersley et al 2000…. see López-Corredoira et al 2007).

Two recent claims:
Cabrera-Lavers et al (2008) use UKIDDS selected red clump stars to show that at $b=0$, $l<10^\circ$, the red clump stars indicate an angle of $\phi=24^\circ$, not $\phi=44^\circ$.

Nishiyama et al (2005) use ISRF/SIRIUS selected red clump stars for $b=+1$, $l=+10^\circ$ to -10° to show a flattening at $l=+5^\circ$ to -5°.

Slope of $(m$ vs $\log N)$ $-3.00 < b < -2.75$.
The GLIMPSE results were a confirmation of several previous group who detected the same structure in the midplane using near IR color-selected red clump giants (Hammersley et al 2000…. see López-Corredoira et al 2007).

Two recent claims:
Cabrera-Lavers et al (2008) use UKIDDS selected red clump stars to show that at $b=0$, $l<10^\circ$, the red clump stars indicate an angle of $\phi=24^\circ$, not $\phi=44^\circ$.

Nishiyama et al (2005) use ISRF/SIRIUS selected red clump stars for $b=+1$, $l=+10^\circ$ to -10° to show a flattening at $l=+5^\circ$ to -5°.
4. Galactic Structure: Questions about the Long Bar

Discrepant angles for Galactic Bar ($\phi_B = 24^\circ$), Long Bar ($\phi_{LB} = 42^\circ$)?

1. Could a 20° “twist” in similar length bars (3.5 vs. 4.5 kpc) be observed in other galaxies?
 (Not claimed, but not searched for.)

2. Can the same models that explain how the central parts of thin bars thicken over time explain the observed twisting?

Debattista et al (2005)
See also Athanassoula (2005, 2007)

Kormendy & Kennicutt (2004)
Fig 14
4. Galactic Structure: Star Formation and the Long Bar

- Vigorous star formation appears to occur at the end of the Long Bar at $l \sim 28.5-31.5^\circ$. This also appears to be the among the densest concentration of infrared dark clouds (Jackson et al 2008).

Davies et al (2007)
26 RSGs!
d=5.83(+1.9/-0.8)

Alexander et al 2009/Clark et al 2009
$M_{cl}=20,000 M_\odot$
d=6±1 kpc
4. Galactic Structure: Mapping Scutum-Centaurus Spiral Arm

Slope of \((m \text{ vs } \log N) \) \(-1.0 < b < 1.0\)
4. Galactic Structure: Mapping Scutum-Centaurus Spiral Arm

Slope of \((m \text{ vs } \log N) \rightarrow -1.0 < b < 1.0\)
4. Galactic Structure: Mapping Scutum-Centaurus Spiral Arm

Slope of $(m \text{ vs } \log N) -1.0 < b < 1.0$
4. Galactic Structure: Mapping Scutum-Centaurus Spiral Arm

L=307.4°

The 4th quadrant feature is consistent with an excess of red clump stars 2 kpc beyond the kinematic distance of the Scutum-Centaurus Arm. Uncertainties in position of peak ranges from 0.03 to 0.07 mag.

We probably only see it from $l=316°$ to $324°$ because of a gap in the CO distribution (the Circinus Gap). We probably don’t see it in the tangency direction because the spread of clump giants in distance smears out the feature. (Benjamin, 2009, in prep)
4. Galactic Structure: Summary

1. Long Bar confirmed and (partially) mapped.

2. Tangencies confirm Drimmel (2000) and Drimmel & Spergel (2001) based on K band light from COBE, but provide more precise information.

3. Lack of stellar tangencies for other arms indicates qualitative difference between spiral arms.

4. Vigorous star formation detected at near end of Long Bar.

5. Part of Scutum Centaurus arm mapped!
5. A Galactic To-Do List: Warm Spitzer Mission

GLIMPSE 360
PI: Barb Whitney

Mapping the stellar and star formation content of the outer galaxy

Deeper than GLIMPSE (~ 18 vs. 13.5 mag)

GOALS:

Warp
Flare
Perseus Arm
(red clump mapping?)
Outer/Distant Arm
Disk truncation?
Change in disk scalelength?
5. A Galactic To-Do List: Warm Spitzer Mission

But will there be pretty pictures?

\(l = 24^\circ.470 \)
\(b = -0^\circ.203 \)

12\(^\circ\) x 12\(^\circ\)

[3.6], [4.5], [8.0]
K, [3.6], [4.5]
5. A Galactic To-Do List: Things Not Yet Done

A GLIMPSE HII region Catalog—Many of the smaller (more distant?) star formation regions remain to be cataloged (and lack velocities).

Systematic search for O stars—Every O star that I’ve noticed is associated with a bubble or smudge of diffuse 24 μm emission and sometimes bowshocks (see poster 4.7, Ipeng et al) Interstellar emission is needed to find O stars, since mid IR colors of the O stars are indistinguishable from other stars.

Galactic Variation of Diffuse PAH emission—How does the PAH emission ratios vary with longitude and environment? GLIMPSE residual images can help. Also, see AKARI posters 4.3 (Doi et al) and 4.9 (Sakon et al)

Star Formation in Different Spiral Arms—Do bubbles, clusters, triggered star formation, etc. change from arm to arm? Despite the fact that the (Near) Three Kiloparsec arm was discovered in 1957, we didn’t even know it had star formation until this year (Dame & Thaddeus 2008; Green et al 2009).

Testing MW bi-symmetry—Star formation at the far end of the Long Bar? Finding the start of the Perseus arm? Comparison of Near/Far 3 kpc arm?
Summary

- The combination of transparency, sensitivity, and resolution have made Spitzer a vital tool in laying bare the structure and workings of the Milky Way, LMC and SMC. One hundred and sixty papers have been published so far using GLIMPSE data alone. Hopefully, GLIMPSE 360 will have yet more surprises!

Star formation: “Buried” high mass star formation is now detected throughout the Galaxy. Hundreds to thousands of new examples of different evolutionary stages are being cataloged, including infrared dark clouds (IRDCs), young stellar objects (YSOs), massive star outflow sources (EGOs), and stellar wind formed PAH bubbles. Dozens of examples of apparent triggered star formation can be found.

Galactic structure: The MW is looking more and more like a typical barred spiral galaxy. It has a Long Bar that appears misaligned with the triaxial bulge by about 20°. Inner Galaxy spiral arms seem to come in matched pairs (Near/Far 3kpc, Scutum-Centaurus/Perseus, Norma/Sagittarius). Gas flows in the inner Galaxy and the Central Molecular Zone (not discussed here) are also typical of barred spirals. One unresolved question: Is it a ringed, barred spiral?

For fun public access to GLIMPSE images—http://www.alienearths.org/glimpse