Why the Early Universe? Grand Questions

• **What** - reionized the universe and were star-forming galaxies the primary agents?

• **When** - did reionization occur? Was it a sudden, protracted or even two-stage process?

• **How** - did it proceed? What processes defined the emerging mass function of galaxies

• **Then What?** - Implications for the subsequent development of galaxies and the IGM

Mostly a review, but with some collaborative material from:

Kuenley Chiu (CIT), Dan Stark (IoA), Eiichi Egami (Arizona), Andy Bunker (Oxford), Jim Dunlop (Edinburgh), Ross McLure (Edinburgh), Jean-Paul Kneib (Marseilles), Johan Richard (Durham), Masami Ouchi (OCIW)
The Landscape - 2010

• Refined measures of optical depth to reionization, τ, from WMAP5

• First indications of downturn in IGM CIV abundance at $z > 5$

• Discontinuity in Lyman α luminosity function $5.7 < z < 6.5$

• Stellar masses and mass densities $4 < z < 6 \rightarrow$ measure of earlier SF

• Demographics and evolution of Lyman break population

• Studies of important diagnostic objects at $z > 6.5$
 - Subaru Lyα emitter at $z=6.96$
 - Large Lyα emitter at $z=6.60$
 - Long duration GRB at $z=8.26$

• Promising young galaxy candidates beyond $z \sim 7$

• Limits from background light measures

• Challenges and prospects for the future

*Spitzer data
WMAP Polarization: Scattering by foreground electrons

Optical depth to scattering:
\[\tau = 0.17 \pm 0.08 \] (WMAP1, 2003)
\[\tau = 0.09 \pm 0.03 \] (WMAP3, 2007)
\[\tau = 0.087 \pm 0.017 \] (WMAP5, 2009)

Data rejects instantaneous reionization at \(z \sim 6-7 \)
Process is likely extended over \(6 < z < 20 \)
CMB studies do not pinpoint the responsible cosmic sources

Instantaneous reionization

Dunkley et al 2009
CIV Absorbers in High z QSOs

- Factor 3.5 drop in Ω_{CIV} over $4.5<z<6$ (300 Myr)
- Caveats: ionization changes, cosmic variance
- Rapid enrichment since $z \sim 9$?
- If absorbers representative: $Z_{\text{IGM}} (z \sim 6) \sim 10^{-4} Z$ implying too few escaping photons ($6<z<9$) to keep IGM ionized

High Redshift Star Forming Galaxies

Lyman break galaxies:
Rest-frame UV continuum discontinuity

Lyman alpha emitters:
Located via narrow band imaging
Declining star formation density of LBGs

Monotonically declining population to $z \sim 6$ and beyond

Drop of $\times 8$ in UV luminosity density $2 < z < 6$

1.2 mag dimming in characteristic luminosity L^*

Reddy & Steidel (2009)
Bouwens et al (2009)
Lyman α emitters as probes of reionization

Efficient: $< 6\text{-}7\%$ of young galaxy light may emerge in Lyα depending on IMF, metallicity etc.

• Lyα damping wing is absorbed by HI and thus valuable tracer of its presence.

• In weaker systems, it may be a sensitive probe of reionisation

Santos (2004)
A Rapid Drop in Lyα Emitters from 5.7<z<6.6?

• 1 deg2 SXDS field with 608 photometric and 121 spectroscopic Lyα emitters

• Contrast with LBGs: no evolution 3<z<5.7!

• Tantalizing fading (0.3m) seen in the LF of Ly α emitters over a small redshift interval 5.7< z< 6.6 (150 Myr)

• Does this mark the end of reionization corresponding to an increase in x_{HI}?

Ouchi et al (2009)
A modest 85cm cooled telescope can see the most distant known objects and provide crucial data on their **assembled stellar masses and ages**

Eyles et al (2005): to produce this mass since $z \sim 10$ required $5-30 \, M\, yr^{-1}$ comparable to the ongoing SFR ($6-20 \, M\, yr^{-1}$) so should see earlier examples if unobscured

SMB03-1: $z_{\text{spec}} = 5.83$ IRAC($3.6\, \mu m$) = 24.2 (AB)
stellar mass = $3.4 \times 10^{10} \, M$ age > 100 Myr
Deciphering past history of $z\sim6.8$ lensed LBG

Multiply-imaged $z=6.8$ galaxy in cluster Abell 2218; magnification $\times 25$

Star formation rate = 2.6 M yr^{-1} Stellar mass $\sim 5-10 \times 10^8 \text{M}_\odot$

Balmer break gives age = 100 – 450 million yrs, so formed at $9 < z_f < 12$

This is already a well-established system 800 Myrs after E

Egami et al (2005)
Lensed LBG at redshift 7.6?

Abell 1689

Contrast with Subaru Lyα emitter at z=6.96

Iye et al (2006) FOCAS 8.5 hrs

SFR (Lyα) = 10 M\ yr$^{-1}$

Egami & Jiang (in prep):

- Poss IRAC detection (2-3σ due to nearby star)
- z-band flux affected by Lyα

 f(z-band) $\sim f$(3.6μm) \sim 0.1 μJy

No Balmer break?

Mass \sim 5-8 10^8 M$_\odot$?

Age $<$ 50 Myr?
From 207 LAEs in SXDS survey (volume 10^6 Mpc3), find a monster LAE $L=4\times10^{43}$ erg s$^{-1}$; size~17 kpc; $\Delta v=\pm 60$ km s$^{-1}$; $\sigma = 100$ km s$^{-1}$

- No AGN signatures, not lensed; IRAC detection, not yet in JHK (Keck Oct 31)
- $M^* = M_{\text{dyn}} \sim 1-5 \times 10^{10}$ M
- Gas excited by shocks due to starburst or cooling gas accreting onto DM halo?
- Accurate SED will determine age & clarify whether Himiko is seen at formation

Ouchi et al. (2009)
GOODS Stellar Mass Functions 4 < z < 6

- 2443 B-drops, 506 V-drops, 137 i-drops in ACS GOODS N/S
- 35% sufficiently isolated with Spitzer/IRAC for robust photometry
- Deep K imaging from ISAAC (Cesarsky), MOIRCS (Bundy)
- Low z contaminants identified (morphology, MIPS)
- Masses and ages using CB07, testing effect of TP-AGB stars
- Individual measures to $M \sim 10^{9.5}$ M$^\odot$; stacked properties for fainter sources

Stark et al 2009
Examples across the full range of data

High mass/bright

mass = 2.3×10^{10} M
age = 290 Myr

Low mass/faint

mass = 4.8×10^9 M
age = 320 Myr

Stacked data

mass = 1.7×10^8 M
age ~ 50 Myr
Stellar Mass Density

- Factor $\times 5$ growth in mass density over $4 < z < 6$:
- Substantial mass density at $z \sim 5$ suggesting much activity >300 Myr earlier ($z > 7$)
- Mass in place is integral of the past activity

$M_\odot^{10^{10}}_{z5} \int dV(z)$

- Hard to reconcile implied past SF with that observed for luminous dropouts but implied SF nonetheless may be sufficient to maintain reionization
- Perhaps early SF is in sub-L^* galaxies or is obscured

Summary ($z < 7$)

- WMAP polarization data rules out instantaneous reionization at late times ($z \sim 6-7$); expect extended phase with sources distributed over $7 < z < 20$

- Rapid rise in CIV abundance over $4.5 < z < 6$ supports prompt enrichment since $z \sim 9$

- Drop in Ly α LF over $5.7 < z < 6.6$ may indicate modest increase in neutral fraction to $z \sim 7$ or perhaps other obscuration

- Assembled stellar mass at $z \sim 5$ indicative of much earlier SF

- Detailed studies of individual $z \sim 7$ sources present a diverse set:
 - LBGs with Balmer breaks indicative of activity since $z \sim 10$
 - LAEs seen during active (perhaps primeval) phases

- No single epoch of formation but mix of continually-forming systems

Upshot: expect abundant population of SF sources $z > 7$ but they may be sub-luminous/obscured (and perhaps not emit Ly α)
Short duty cycle of SF at high z (Stark et al 2009)

- Mass \div SFR gives an ‘effective age’
- Remarkably these ages are short (<300 Myr) and don’t get longer as Universe ages!
- So LBGs at $z\sim6$ cannot all grow into more massive versions at $z\sim5$ and $z\sim4$
- Successive generations arriving consistent with faster cycles of SF
GRB090423 $z=8.26$

- Long burst typical of lower z examples similar massive star progenitor (Salvaterra et al)
- VLT spectrum $t=16$ hrs (Tanvir et al)
- 3σ IRAC detection (46 ± 17 nJy) at 3.6µm (5 days post-burst) (Chary et al. 2009; GCN9582)
Testing for obscured SF at high z

Could there be a discrepancy between the SFR derived from the rate of GRBs and UV-emitting LBGs?

- Dust obscuration?
- GRBs more efficiently produced because of lower metallicity?
- Changes to a top-heavy initial Mass Function more top-heavy?

Chary 2009
Hubble WFC3 High z Stampede

WFC3/IR: 850 - 1170nm
2.1 × 2.3 arcmin field of view
0.13 arcsec pixel⁻¹
10 times survey power of NIC3

UDF 4.7 arcmin²
60 orbits in YJH
Reaches m_{AB}~29 (5σ)

Bouwens et al 0909.1803
Oesch et al 0909.1806
Bunker et al 0909.2255
McLure et al 0909.2437
Bouwens et al 0910.0001
Yan et al 0910.0077
Labbe et al 0910.0838
Bunker et al 0910.1098
z > 7 candidates from WFC3 UDF campaign

3 IR filters c.f. 2 leads to more secure photometric redshifts and reliable UV continuum slopes

McLure et al (2009)
But beware.. uncertain redshifts still an issue..

\[z \quad Y \quad J \quad H \]

1678: \(z_{\text{est}} = 7.05 \) \((6.60 - 7.40)\)

1107: \(z_{\text{est}} = 7.60 \) \((7.30 - 7.90)\)
- 10-16 z-band dropouts to $Y_{AB}\sim28.5$ corresponding to $6.5<z<7.5$
- Towards a reliable faint end slope: low star formers $\sim1\ M\ yr^{-1}$ dominant
- Abundance decline of $\sim\times2$ since $z=6$

Oesch et al, Bunker et al 2009
IRAC Detections of Luminous Galaxies @ z~7

11 objects in GOODS/UDF M<10^{10} M ages <400 Myr

SF that produced these galaxies likely insufficient for reionization

Gonzalez et al 2009
To complete mass density at z~7 need to probe much fainter. UDF z~7 candidates only detected in stacked IRAC data (N=12). Highly uncertain but estimate $M \sim 10^9 \, M_\odot$ and ages>100 Myr. Warm mission should improve constraints significantly.

Labbé et al 2009
Did Star Forming Galaxies Reionize the Universe?

Stellar mass density at $z \sim 5-6$ (and with greater uncertainty at $z \sim 7$) implies past SF in low luminosity galaxies may be sufficient for reionization, especially if escape fraction of photons is >0.2

Stark et al 2007,2009; Labbé et al 2009
Unusually Blue UV Continua?

$z \sim 7$ WFC3 data provides Y+J+H data and thus the first reasonable estimate of the slope β of the stellar continuum where $f(\lambda) \propto \lambda^\beta$: remarkably steep values $\beta \rightarrow -3$!

Bouwens et al 2009
Bunker et al 2009
What Might This Mean? (..if correct..)

- Can reproduce $\beta > -2.5$ with dust-free young stars with $Z \sim 0.1 Z$
- To reproduce $\beta \sim -3$ need very low metallicities, extremely young bursts or top-heavy IMF with implied high escape fraction
- If verified, strengthens case for reionization from low L galaxies
Status of excess IR Background Fluctuations

Is foregoing inconsistent with earlier claims for detected fluctuations in background light?

- First detection reported by Kashlinksy et al. 2005, with Spitzer at 3.5 and 4.5 μm. Interpreted as evidence for a $z > 8$ first-light component responsible for reionization (also Kashlinsky et al. 2006 with GOODS).

- Could it be partly due to undetected dwarf galaxies at moderate redshifts of 1 to 3. Cooray et al. 2006; Chary et al. 2008 using fluctuations in GOODS and a stacking analysis on multi-wavelength ACS data;

- Thompson et al. 2007 report upper limits with HST/ NICMOS, which are argued to be inconsistent with Kashlinsky interpretation for $z > 8$ sources.

Kashlinksy et al 2005
Expected near-IR EBL from reionization

Reionization models matched to WMAP 5-year; two extreme histories with source counts matched to bright-end LBG LFs in UDF

Cooray et al argue Kashlinky et al’s fluctuations arise from low L z~2 sources
To explain contamination in Kashlinky et al signal: need a sizeable z~2 dwarf galaxy population with H~27

Check using new deep WFC3/UDF data

Scarlata, Chary & Koekemoer 2009
Conclusions & Future Prospects

• This is an exciting time in the study of z>5 galaxies with Spitzer still in the vanguard!
• Dramatic progress with deep IRAC observations: from a couple of z~6 detections in 2005 now to comprehensive measures of the stellar mass density over 4<z<7
• With individual diagnostics objects, Spitzer continues to play a key role
• WFC3 has led to a flurry of recent conclusions (past 6 weeks!): galaxies may not maintain reionization over 7<z<10 as WMAP requires unless:
 - dominant fraction of sub-luminous galaxies
 - increased escape fraction
 - tantalizing evidence for both in early data!
• Crucial to fully exploit IRAC in warm mission in concert with WFC3 – legacy of JWST/ELT targets