Debris Disks - from Spitzer to Herschel and Beyond

Steward Observatory
The University of Arizona
Our neighborhood debris disk

There was a huge amount of collisional activity and debris generation in the first few 100 Myr.
We actually have two of them, both maintained by collisions among planetesimal parent bodies. The asteroid parent bodies have relatively short dynamical time scales. The Kuiper Belt has a much longer dynamical time scale and is therefore evolving much more slowly. In both cases, the dust is lost fairly quickly and must be replenished.
What can we learn about planet system evolution from the debris disks around other stars?

Spitzer has detected hundreds of them through the infrared excess emission by warm dust.

How does debris disk activity decay? Do we see evidence for different dynamical time scales as between the asteroid and Kuiper belts? Does the asteroidal activity die away in 100 Myr?
How Debris Disk Excesses Behave With Age

• A small contamination by young stars can bias the results toward more excesses

• Identifying old stars (mid-F to early K)
 • Validate chromospheric activity ages on HR diagram
 • Select stars from full sample above 5 Gyr isochrone
 • Purge sample of stars < 5 Gyr by chromospheric activity

• Final sample is 122 stars

• Excess properties:
 • No 24μm excesses above 10% of photosphere
 • > 16% have excesses at 70μm
 • Identical to samples dominated by younger stars
 • 16.4%, Trilling et al. (2008)
Excess Incidence for Stars > 5 Gyr Old
Number of 70μm Excesses Hardly Decays with Stellar Age

Compare 70μm With Trilling et al. (2008)
Number of 24\textmu m Excess Stars Decays Dramatically
High-weight point at 120MYr from Pleiades (Sierchio et al. in prep.)

![Graph showing the fraction of stars over time, with early-type and solar-type thresholds indicated.]
Booth et al. (2009): Modeled effect of the Nice model of the Late Heavy Bombardment on the 24 and 70μm excesses of the Solar System

However, with better ages, we know that their “old” points at 24μm are incorrect, but at 70μm the picture is more or less accurate.
Booth et al. (2009): Modeled effect of the Nice model of the Late Heavy Bombardment on the 24 and 70μm excesses of the Solar System

However, with better ages, we know that their “old” points at 24μm are incorrect, but at 70μm the picture is more or less accurate.

So either the Nice model is not quite right, or LHBs are rare. Herschel will test these possibilities further.
What is happening in the inner, evolving region that dominates at 24μm (and is where terrestrial planets lie)?
A-star excesses show a range of temperatures
(from Morales et al. 2009)
The temperature distribution is broad and hints at being bimodal.
Solar-Type stars are characterized by cold excesses. But is this because they are on average older? (Morales et al. in prep.)

- Morales et al., in prep: sample of 103 sources:
 - Spectral type K4 thru F5
 - MIPS 24 μm photometry
 - Estimated Ages up to 1 Gyr
 - Have IRS Lo-Res data
- 20 have MIPS 24 μm excess
- 24 μm excess confirmed by IRS in all but one

→ the sample consist of 19 sources, w/ MIPS 24 μm excess
 - spectral type K0 thru F5
 - Ages 40-900 Myr
Warm systems are remarkably similar in temperature, A stars vs. solar-type stars (assuming blackbody grains)

w/ 70 μm detections

- Solar Type (9)
 - Median $T_{\text{dust_in}} \approx 188$ K (Median $R_{\text{in}} \approx 2.5$ AU)
 - Median $T_{\text{dust_out}} \approx 54$ K (Median $R_{\text{out}} \approx 20$ AU)

- A type stars (27)
 - Median $T_{\text{dust_in}} \approx 199$ K (Median $R_{\text{in}} \approx 9.7$ AU)
 - Median $T_{\text{dust_out}} \approx 58$ K (Median $R_{\text{out}} \approx 114$ AU)

No 70 μm detections

- Solar Type (10)
 - Median $T_{\text{dust}} \approx 178$ K (Median $R_{\text{dust}} \approx 3.0$ AU)

- A type stars (23)
 - Median $T_{\text{dust}} \approx 204$ K (Median $R_{\text{dust}} \approx 12$ AU)

Are the similarities telling us more about grain transport and destruction than disk underlying structure?
Resolved Disks and SEDs

- Inner and outer zones
- Disks and Planets
- Outflows and weakly bound grains
- General behavior patterns
Inner vs. Outer Zones in Debris Disks

Illustration
Fomalhaut (A3V)

JWST view
7.8 pc

ε Eridani (K2V)
3.2 pc

MIPS 24 μm (PSF-subtracted)
24 photosphere subtracted

MIPS 70 μm
70 fine scale deconvolved

Stapelfeldt et al. 2004

SCUBA 850 μm

Holland et al. 1998

Greaves et al. 1998

Backman et al. 2009
Stars + Planets by direct imaging + Debris Disks

Fomalhaut Kalas et al. 2008

- Dust belt ~140 AU
- Kalas et al. 2005

HR 8799 Marois et al. 2008

- ~68 AU
- ~38 AU
- ~24 AU

Figure: Graphs showing the Fomalhaut and HR 8799 systems with data points and labels indicating distances in AU.
Outflows and Weakly Bound Grains: HR 8799

Three Component Disk:
- inner warm (asteroid-like) belt (inside planet d)
- outer cold (Kuiper-belt-like) planetesimal disk (outside planet b)
- extended halo extending up to 1000 AU, composed of fine dust grains

→ vigorous stirring of parent body ring

Su et al. 2009
Outflows and Weakly Bound Grains: Vega

Vega, A0V, 7.7 pc, ~200 Myr (Fomalhaut's twin sister)

(all images are to the same scale)

face-on ring-like disk

~300 AU

450 µm (Marsh et al. 2006)

IR emission extends far outside the ring-like disk seen at sub-millimeters

Also see Holland et al. 1998, and Wilner et al. 2002
Different Grain Populations:
- large parent bodies confined in a birth ring
- small grains driven outward by radiation pressure forming an extended disk
→ recent transient collisional events

Su et al. 2005
A General Pattern of Disk Structures?

Various Zones:
- Outer planetesimal belt/disk, $T_d \approx 60 \text{K}$, evolves very slowly
- Halo extending beyond the cold planetesimal disk (found around luminous stars)
- Warm ring/belt, $T_d \approx 150-230 \text{ K}$, evolves faster

Detailed Excess SEDs:
- Sharp SED cutoffs appear to be associated with inner disk edges maintained by planets
- Do these similarities reveal a generality in planet system architectures?

Su et al. in prep.
Sharp-Edge Features - Common? or Rare?

Nearby A-type

Nearby later (~solar)-type

Su et al. in prep.
The Frequency of Late Giant Impacts
20 - 120 Myr
(such an impact produced our moon)
1 - 2% of solar type stars in the 20-120Myr age range have very large excesses. That is, 3 - 4 examples in > 300 stars between 20 and 120 Myr old. Must be rare events, or short-lived ones.
One candidate, HD 23514, shows a spectral feature at ~ 9\textmu m, indicative of condensation of silicon oxides from vapor and thus of a major planetesimal collision. (Rhee et al. 2008)
The signature of condensation from silicon oxide vapor is also found in HD 172555 (Lisse et al. 2009). See also Fujiwara on HD 15407.
Two others show very finely divided crystalline silicates (e.g., olivines) at high temperature -- ~ 600K (Gorlova et al., in prep; fits by C. Lisse, private communication). The masses and compositions indicate that the parent bodies were asteroid-like, ~ 260 km diameter, & within ~ 1 AU of the stars.

~ 35 Myr 680-780K T_{max}

~ 100 Myr 420-520K T_{max}
Summary

• Decay of debris disk activity
 • Slow evolution of excesses at 70\textmu m
 • Rapid drop in 24\textmu m excess incidence between 120 & 600 Myr, for both A-type and solar-type stars
 • But few Late Heavy Bombardments (at least Nice-style)

• A look at the dynamically active region
 • Broad range of inner disk temperatures, similarity of average properties between A-type and solar-type stars

• Resolved disks and spectral energy distributions
 • Disks and Planets
 • Outflows and weakly bound grains
 • Can we recognize a general behavior pattern?

• The frequency of late giant impacts
 • Incidence of current giant impacts between 20 & 120 Myr is 1 - 2%
 • Some cases show presence of dust condensed from SiO vapor