Spectroscopy and Astrochemistry with Herschel

Darek Lis (Caltech)

Pasadena, August 26, 2013

Talk Outline

- Goal: give a flavor of Herschel spectroscopic capabilities and the kind of spectroscopic data that can be found in the archive
- Focus on recent results (mostly 2012-13)
- Will cover a wide range of interstellar environments, from diffuse to dense galactic clouds, to ISM in nearby galaxies
- Spectral line surveys
- Water in cold environments
- PACS/SPIRE spectroscopy: Orion Bar and Sgr A*
- Absorption spectroscopy, new species: H₂Cl⁺, HCl⁺
- Formation pumping: H_3O^+
- PACS and SPIRE observations of nearby galaxies

Orion KL Full Band Analysis

- One million independent data channels
- Over 60 species, including isotopologues, modeled by a team of ~20 people
- From residual fit: ~2500 U-lines out of 20,000 (~10%)

Orion KL Organics

- LTE approximation generally works well for hot cores, can constrain excitation
- Column densities and abundances well determined—assuming a source size
- Methyl and ethyl cyanide show significant emission from energy levels > 800 K
- Harder to evaporate off the grains?
- Compare with models of organic synthesis

N. Crockett

Detection of HD¹⁸O in Orion

- Six HD¹⁸O lines detected with a V_{LSR} ~ 6.5 km/s
 (does not exactly match the hot core velocity)
- Implies either very high D/H ratio or very high H₂O column density in

some component

- Need accurate source size
 to model the emission
- ALMA SV data provide spatially resolved images!

J. Neill

HDO with ALMA

- Multiple spatial components
- Bright HDO emission in a small clump (2" in size) at ~7 km/s
- Agrees with HD¹⁸O velocities
- Analysis of water lines also consistent with emission from this small clump
- Additional components also contribute
- Revised X(H₂O)~6.5 10⁻⁴; HDO/ H₂O~0.003

Conturs 230 GHz continuum Color HDO

J. Neill

Water

- Abundance enhanced in warm gas outflows
- Derived hot core water abundances often lower than the canonical value of 10⁻⁴ (modeling deficiency?)
- Ortho-para ratio generally consistent with the high-temperature value of 3, but with some exceptions (e.g., Galactic Center)
- Spectacular detections of gas-phase water in disks and a prestellar core in very long HIFI integrations

G. Melnick, V. Tolls

Water in Disks

TW Hya

- Lines of ortho and para water detected for the first time with Herschel/HIFI in TW Hydrae
- I0 mln years old T Tauri star, 0.6 M
 at 54 pc
- Several thousand oceans worth of water ice, at 100–200 AU from the star
- If other disks are similar to TW Hydrae, ample water exists in the outer disk, where comets form

Water in Disks

- New detection in HD100546 (plus several upper limits)
- Water-covered planets like Earth may be common

M. Hogerheijde

Water in Prestellar Cores

P. Caselli

- Inverse P-Cygni profile indicative of infall
- Water has to be present in the central few 1000 AUs
- Water abundance (>10⁻⁹) maintained by FUV photons locally produced by interaction of CRs with H₂
- FUV photons then irradiate icy mantles and release water molecules into the gas phase
- Complex interplay between gas and solids
- $H_2 OPR > I$
- The simple "onion" structure of prestellar cores has to be carefully re-evaluated (ALMA)

[•] LI544, I3.6 hours

PACS Orion Bar Cooling and PDR Chemistry

Strong [OI], [CII] + high-J CO + excited OH, CH^+ , $H_2O...$

OH in Orion Bar

- Five rotational Λ -doublets up to 510 K
- Emission extended, correlates with high-J CO and CH⁺, but not H_2O
- Warm (160–220 K), dense (10⁶⁻⁷ cm⁻³) gas; unresolved clumps exposed to FUV radiation (O + vib H₂)

J. Goicoechea

PACS/SPIRE SgrA*

- Separate emission from the central cavity and the CND
- X-rays or CRs do not play a dominant role in the energetics of the hot molecular gas
- Shocks or the related supersonic turbulence dissipation and magnetic viscous heating dominate

Absorption Spectroscopy

First FIR DIB Analog?

 Molecule present in *all* spiral arm clouds between us and the galactic center, but not the Sgr B2 envelope (difficult to get precise frequency)

H₂Cl⁺ and HCl⁺

Chlorine chemistry in diffuse clouds is simple: $CI^++H_2 \rightarrow HCI^++H \qquad HCI^++H_2 \rightarrow H_2CI^++H$ $H_2CI^++e \rightarrow HCI+H \qquad (10\%)$

→Cl+products (90%)

- Dense clouds: proton transfer from H₃⁺ to Cl can also initiate formation of Cl-bearing molecules
- H₂Cl⁺ detected early on by HIFI, but HCl⁺ has been a long struggle (needed precise lab frequencies—H. Gupta)
- $HCI^+/H_2CI^+/HCI \sim I$
- The two ions ions overabundant by a factor of a few compared to chemical model predictions
- ISM chlorine chemistry still a mystery
- H₂Cl⁺ and HCl accessible from the ground

- Strong CO line emission (J=4 to 16)
 - Extended warm component (50-100 K), hotter component toward N/M, heated by UV and shocks (dust only 20-30 K)
 - High-density tracers (HCN, HCO⁺...)
 - Absorption lines of light hydrides
 - Uniform luminosity ratio, CO/ FIR~(1-3)10⁻⁴, across the extended envelope; same heating mechanism on all scales

M. Etxaluze

HIFI Sagittarius B2(N)

H_3O^+

Metastable H_3O^+ in Sgr B2(N)

Formation Pumping

Cosmic/X-ray + $H_2 \rightarrow H_3^+$ (widespread in the Galactic Center region) $H_3^+ + O \rightarrow OH^+ + H_2$ $OH^+ + H_2 \rightarrow H_2O^+ + H$ $H_2O^+ + H_2 \rightarrow H_3O^+ + H + 1.69 \text{ eV}$

Also

•

 $H_3^+ + H_2^- O \rightarrow H_3^- O^+ + H_2^- + 2.81 \text{ eV}$

- Collisional relaxation time has to be long compared to recombination/ reformation of H_3O^+ molecules to maintain the population
- Can the hot ammonia also be explained by formation pumping? (More stable, long lived—more time to relax through collisions?)

- Nuclear regions have high water abundances ~10⁻⁵
- Chemistry typical of evolved hot cores, where grain mantle evaporation has occurred
- OH/H₂O~0.5 indicates effects of X-rays or CRs
- H₃O⁺ rotational temperature ~500K in Arp 220, similar to Sagittarius B2
- Lines arise in a relatively low density (~10⁴ cm⁻³) interclump medium with a very high ionization rate (>10⁻¹³ s⁻¹)

SPIRE FTS Arp 220

 ALMA will carry out similar studies in high-redshift universe

Lesson I— Spectral Scans

- Main goal of the GT teams was to characterize the far-infrared spectrum and identify the lines
- This has been done--reduced and calibrated data either already publicly available or will be soon
- A range of sources from low-mass to high-mass starforming regions observed--comparative studies
- If you have supporting ground-based data (interferometry), you can do a much better job at modeling HIFI spectral scan data
- All HIFI spectra are 2x4 GHz-wide spectral scans; the "bonus lines" have largely not been analyzed at all

Lesson 2 — Modeling

- For many species with complex non-LTE excitation (e.g., water), the abundances are very model dependent
- To interpret observations of warm water, need realistic 3-d models of the source structure, including, e.g., outflow cavities
- If you have access to state-of-the-art radiative transfer models, there is a lot of important work to be done
- Legacy aspect
- Same applies to chemical models, as abundances of some of the newly-detected species do not match model predictions