

ISA

Processing and analyzing HIFI spectral maps in HIPE

Pat Morris (NHSC)

- Familiarity with HIFI's mapping modes
- Inspection
- Cleaning the input spectra (baselines)
- Regridding
- Cube toolbox
- Image analysis
- Saving the output
- [Bonus if time+interest: line fitting with the spectrum fitter tool (unscripted)]

The Mapping AOTs schematically

The main purpose of the OFF positions is to provide baseline removal of drift + standing waves.

- 1. The OFFs may sometimes be contaminated with line emission (most often CO and [CII], sometimes others because of the fixed DBS throw). You should check for this in the data (Sylvie's demo).
- 2. The OFFs may sometimes not fully correct the ripples, due to short Allan

times (rapid drift cross-over from radiometric noise).

C⁺ + 1900 GHz + continuum + drift

OTF maps used a flawed telescope line scan pointing mode

• This mode has been flawed on the telescope, producing departures along the intended scan path.

• This behavior is revealed with improved pointing reconstruction currently in development for wider application.

The "zig-zag" has components of slewing errors unrelated to timing errors in HIFI.

Errors are projected in both RA and Dec (not just along the scan line).

The telescope appears not to be matching the expected speed once scanning, causing map points to bunch up at the beginning.

The deviations are clearly correlated with the slews from OFF, Looks like slew \rightarrow deceleration \rightarrow scan transition bugs.

 The consequence is that sampling requested in HSpot is not perfect, and until the new pointing reconstruction is available for re-assignment of attitudes, some observations will exhibit a form of "zig-zag"

The new pointing history reduces the zig-zag

C+ line fluxes in spectra extracted from the cube in a slice across the Orion Bar.

Red is based on New pointing and shows ~2x lower noise around an approximating (3rd order) fit to the flux gradient across the PDR.

- What we will do:
 - 1. Load a H_2O and ¹³CO OTF map of massive SFR W51.
 - 2. Inspect metadata for the map layout on the sky, noise performance parameters.
 - 3. Remove "artifacts" from the Level 2 spectra.
 - 4. More discussion of artifacts (ripples).
 - 5. Regrid into spectral cubes.
 - 6. Try some tools from the cube analysis toolbox (CSAT)
 - 7. Highlight some image analysis tools.
 - 8. Save the output.

Loading obsid 1342207383 should follow the script

installation_demo_hifidpws_aug2013_v1.py

It is a fairly large observation, the pool is ~ 2 GB.

2. Inspection of the data

• This is a familiarization of the data tree for a spectral map, inspection of the Level 2 HTPs in Spectrum Explorer (for data quality / artifacts), and locating the metadata that describe the map pattern and expected noise.

2. HTP inspection

2. Key metadata

ASA Herschel Sc

obs.refs["auxiliary"].product.refs["HifiUplinkProduct"].product["HifiUplinkParameters"]

sobs.refs["ameters"]								
tobs.refs["ameters"] ×								
Hifil	HifiUplinkParameters							
Meta Data								
None								
Ind		value	unit	tuno	departmen			
	ex name	value	unit	igua long Long	Uescription			
	mapLines	11		java.lang.Long	Number of map lines			
	mapLineStep	9.0	arcsec	java.lang.Double	Map line spacing			
	mapReadouts	11		java.lang.Long	Number of readouts per line			
	mapReadoutSep	9.0	arcsec	Java.lang.Double	Line readout spacing			
4	noiseMinUsb	UNKNOWN	ĸ	UNKNOWN	Predicted SSB Noise USB at minimum bandwidth			
5	noisemaxUSD	UNKNOWN	ĸ	UNKNOWN	Predicted SSB Noise USB at maximum bandwidth			
6	noiseMinLsb	UNKNOWN	K	UNKNOWN	Predicted SSB Noise LSB at minimum bandwidth			
	noiseMaxLsb	UNKNOWN	K	UNKNOWN	Predicted SSB Noise LSB at maximum bandwidth			
8	noiseMinWidth	UNKNOWN	MHZ	UNKNOWN	Minimum bandwidth for noise predictions	0000		
9	noiseMaxWidth	UNKNOWN	MHZ	UNKNOWN	Maximum bandwidth for noise predictions	0000		
1	tmbReference	/89.0	K	java.lang.Double	l emperature (main beam) at noise reference frequency	0000		
1	1 noiseRefFrequency	1108.0	GHz	java.lang.Double	Noise reference frequency			
12	2 observingTime	3091	S	java.lang.Long	Observing time			
13	3 offTime	471.6	S	java.lang.Double	Off source time			
14	4 overheadTime	702.8	S	java.lang.Double	Overhead			
1:	5 totTimeEfficiency	77.3	%	java.lang.Double	Total time efficiency			
1(6 totNoiseEfficiency	44.2	%	java.lang.Double	Total noise efficiency			
17	7 driftNoiseContrib	9.0	%	java.lang.Double	Drift noise contribution			
18	3 refSelected	true		java.lang.Boolean	Sky reference selected			
19	e_lof_0	1107.898	GHz	java.lang.Double	LO frequency selected			
20) oneGHzReference	true		java.lang.Boolean	One GHz noise estimation bandwidth	8888		
2	1 hrsModeH	Nominal		java.lang.String	HRS resolution mode H			
22	2 flyRefOffsetDec	0.0	arcmin	java.lang.Double	Sky reference offset declination			
23	3 frame	heliocentric		java.lang.String	Redshift velocity frame	10000		
24	1 spectrometer	both		java.lang.String	Spectrometers used	0000		
25	5 dec	14.51069444444445	degrees	java.lang.Double	Target declination J2000.0	2000		
20	6 fe_eff_res_max_0	0.3	GHz or km/s	java.lang.Double	Maximum width spectral resolution at noise goal	0000		
2	7 redshiftType	radio		java.lang.String	Redshift type	1000		
2	3 flyRefOffset	true		java.lang.Boolean	Sky reference offset is relative	2000		
29	esolutionMhz	false		java.lang.Boolean	Resolution width units (true = MHz, false = km/s)	3		
30) ra	290.922875	degrees	java.lang.Double	Target right ascension J2000.0			
3	1 decoff	14.5106782913208	degrees	java.lang.Double	Sky reference OFF declination J2000.0			
3	2 fe eff res min 0	0.3	GHz or km/s	java.lang.Double	Minumum width spectral resolution at noise goal			
3	3 doalTime	2800	s	java.lang.Long	Goal observing time			
34	1 flyNyquistSel	true		java.lang.Boolean	Spectral Map Nyquist sampling requested			
3	5 raoff	291.0089416503906	degrees	java.lang.Double	Sky reference OFF right ascension J2000.0			
30	3 redshift	59.5	redshift or km/s	iava.lang.Double	Redshift value (km/s if redshiftType is optical or radio)			
3	7 doingTime	true		java.lang.Boolean	Time estimation is based on observing time or rms poise goal			
3	3 flvY	1.5	arcmin	iava.lang.Double	Spectral map scan length requested			
30) band	4b		java Jang String	HIFI band			
4) goalNoise	0.1	к	java lang Double	Goal rms basline noise			
41	goantoise	0.1	i s	java.lang.bouble	ovarmo vasine noise			

- This observation is well-behaved, following L2 HTP inspection.
- We will remove the baseline under the 13CO line (with no distinction between continuum and baseline offsets).
- We will not go through removal of fringes (since there is no strong residual), but the procedure is basically the same.
 - You may combine both fringe fitting with baseline fitting and removal with fitHifiFringe (sine waves).
 - In the future more advanced ripple correction will be available for observations using Bands 6 or 7 with e-ripples.

- S/N is good experiment with oversampling to ~2 x Nyquist.
 - Remember that structures are resolvable to at least ~1/10 the beam size when S/N is very high.
 - Noise is computed on a map point basis; does not take the convolution into account (thus generally better than predicted).
 - Changing the pixel scale is the most common application, and we do not do a complete experiment with all possible parameters, e.g. altering WCS references. For this consult the HIFI DRG.

6. Cube Spectrum Analysis Toolbox (CSAT)

• We will crop in frequency, create a PV map, convert the cube units GHz to velocity, make a velocity map, and an integrated intensity map. We can also subtract baselines in the CSAT (not as sophisticated as fitBaseline, but a good means to create a continuum map).

- As noted, the CSAT has a subtractBaselineFromCube task, but be careful with this.
- If the data have artifacts, they should be removed before convolving them into the "good" spectra at each map position. Once convolved, the subtraction of the baseline is not accurate.
- Baseline subtraction in the CSAT is valid for continuum emission.

7. Image analysis

- Image analysis tools have been developed by PACS/SPIRE, usable on any HIFI 2D map image.
- Smoothing, contour overlays, source fitting, etc etc.

- We shall look only at means of FITS export.
- Reinserting our tuned cubes into the obs context is possible, but a big hassle that's worth it only if managing a lot of data (and we can show you how offline or via helpdesk).

Bonus if time: Line fitting (unscripted)

🏝 spectrum3								
++ spectrum3 × \								
🔛 🖆 🔍 🄄 🖑 🖾 🖽 🖩 🖾 🎘 🐜 🗏 🗉 🖡 🖡 T 🗮 🌹 👁 🚹 🖹 auto line auto color								
() () () () () () () () () ()	★ Spectrum Fitter GUI ★ props shift-click on plot element to change context LAYER LAYER Id 6 pglid TotalModel 6 name TotalModel 0 ZOrder 0 0 I ayerXY 0 0 ShowninLegend ✓ 0 LAYER STYLE 0 0 Color [0, 178, 0] 0 Ine SOLID 0 Stroke 1 0 dashAray 6.0, 6.0 0 symbolShape 2-VCROSS 0 symbolSize 7 1 legendSymbolSize NaN 0 errorbar 0 0							
× spectrum3 × FitResult	X preview							
ALL 0 SFG-Type SFG-ID ModeIType Integrated CParm_0 Name_0 Value_0 StdDev_0 Name_1 Value_1 S 0 Spectrum (ps, segm) -	taDev 00000 27078 58480							

