





# M31 in the optical and IR



# UV/optical to IR relationship



### UV/optical to IR relationship



negative K-correction



negative K-correction



Dole et al (2006)

# optical and infrared backgrounds



# optical and infrared backgrounds



1 arcmin





#### 1 arcmin



Nguyen et al. (2009)

#### 2 repeats (fls)



#### 33.5 mJy (3σ)



33.5 mJy (3σ) 24.7 mJy (3σ)



#### 33.5 mJy (3σ) 24.7 mJy (3σ)



33.5 mJy (3σ)

24.7 mJy (3σ)

20.2 mJy (3σ)







# The Cosmic Infrared Background



# The Cosmic Infrared Background

# CIB Results in 2 parts: Unresolved/Resolved



#### $S < 20 \text{ mJy} : 36,000/deg^2$ $S > 20 \text{ mJy} : 1,200/deg^2$

## Local Resolved Galaxies



Smith++ 2012, *ApJ*, 756, 40 The Herschel Exploitation of Local Galaxy Andromeda (HELGA) II See also: Mentuch Cooper++2013, Foyle++2013, SINGS: Wilson++2012

# Lensed Sources



 Sources with flux density S > 100mJy at 500µm have high probability of being lensed

Negrello++ 2010

The Detection of a Population of Submillimeter-Bright, Strongly Lensed Galaxies. Science 330, 800.

### Lensed Sources

#### SPIRE 250µm (6" pixels)



#### z=2.97 from spectroscopic follow-up



Contours From Submillimeter Array (SMA)

Conley++ 2011, DISCOVERY OF A MULTIPLY LENSED SUBMILLIMETER GALAXY IN EARLY HerMES *HERSCHEL/SPIRE* DATA also see: Negrello++ 2010, Gonzalez-Nuevo++ 2012, Wardlow++ 2012, Fu++ 2013 Near-Infrared (Keck) Millimetre (PdBI)

### "Red" Sources





500 µm



©ESA/Herschel/GTC/Keck/IRAM



Riechers++ 2013, *Nature*, 496(7), pp.329–333 A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 See also: Dowell++ in prep., Gill++ in prep.

# SEDs



Symeonidis++ 2013, The *Herschel* Census of Infrared SEDs through cosmic time, *MNRAS*, 431(3), pp. 2317–2340. See also: Casey++ 2012a,b, Magdis++ 2010, 2012, Canalog++ 2013

# ii) The Unresolved Background



# CIB Anisotropies (CIBA)

# CIBA power spectra



# Clustering of DSFGs



See also: Bethermin++ 2013, Wang++ 2013

# **Best-Fit Halo Model**



# **Best-Fit Halo Model**



k-band selected sources at z=1.2 on SPIRE 250µm map  $\bigcirc$ 

3

0

 $\bigcirc$ 

Ó

 $\odot$ 

DOP

 $\mathbb{O}$ 

Ø

 $\bigcirc$ 

**()**)

09

O

DO

Ø

0



# stacking



Phil Korngut (Caltech)

# stacking





## stacked CIB



## stacked CIB



# stacked CIB



# ~80% at SPIRE wavelengths







# CIB by Luminosity Class





## Deep Counts and the CIB



# AGN Stacking

39

doi:10.1038/nature11096

### The suppression of star formation by powerful active galactic nuclei

M. J. Page<sup>1</sup>, M. Symeonidis<sup>1</sup>, J. D. Vieira<sup>2</sup>, B. Altieri<sup>3</sup>, A. Amblard<sup>4</sup>, V. Arumugam<sup>5</sup>, H. Aussel<sup>6</sup>, T. Babbedge<sup>7</sup>, A. Blain<sup>8</sup>, J. Bock<sup>2,9</sup>, A. Boselli<sup>10</sup>, V. Buat<sup>10</sup>, N. Castro-Rodríguez<sup>11,12</sup>, A. Cava<sup>13</sup>, P. Chanial<sup>6</sup>, D. L. Clements<sup>7</sup>, A. Conley<sup>14</sup>, L. Conversi<sup>3</sup>, A. Cooray<sup>2,15</sup>, C. D. Dowell<sup>2,9</sup>, E. N. Dubois<sup>16</sup>, J. S. Dunlop<sup>5</sup>, E. Dwek<sup>17</sup>, S. Dye<sup>18</sup>, S. Eales<sup>19</sup>, D. Elbaz<sup>6</sup>, D. Farrah<sup>16</sup>, M. Fox<sup>7</sup>, A. Franceschini<sup>20</sup>, W. Gear<sup>19</sup>, J. Glenn<sup>14,21</sup>, M. Griffin<sup>19</sup>, M. Halpern<sup>22</sup>, E. Hatziminaoglou<sup>23</sup>, E. Ibar<sup>24</sup>, K. Isaak<sup>25</sup>, R. J. Ivison<sup>5,24</sup>, G. Lagache<sup>26</sup>, L. Levenson<sup>2,9</sup>, N. Lu<sup>2,27</sup>, S. Madden<sup>6</sup>, B. Maffei<sup>28</sup>, G. Mainetti<sup>20</sup>, L. Marchetti<sup>20</sup>, H. T. Nguyen<sup>2,9</sup>, B. O'Halloran<sup>7</sup>, S. J. Oliver<sup>16</sup>, A. Omont<sup>29</sup>, P. Panuzzo<sup>6</sup>, A. Papageorgiou<sup>19</sup>, C. P. Pearson<sup>30,31</sup>, I. Pérez-Fournon<sup>11,12</sup>, M. Pohlen<sup>19</sup>, J. I. Rawlings<sup>1</sup>, D. Rigopoulou<sup>30,32</sup>, L. Riguccini<sup>6</sup>, D. Rizzo<sup>7</sup>, G. Rodighiero<sup>20</sup>, I. G. Roseboom<sup>5,16</sup>, M. Rowan-Robinson<sup>7</sup>, M. Sánchez Portal<sup>3</sup>, B. Schulz<sup>2,27</sup>, D. Scott<sup>22</sup>, N. Seymour<sup>1,33</sup>, D. L. Shupe<sup>2,27</sup>, A. J. Smith<sup>16</sup>, J. A. Stevens<sup>34</sup>, M. Trichas<sup>35</sup>, K. E. Tugwell<sup>1</sup>, M. Vaccari<sup>20</sup>, I. Valtchanov<sup>3</sup>, M. Viero<sup>2</sup>, L. Vigroux<sup>29</sup>, L. Wang<sup>16</sup>, R. Ward<sup>16</sup>, G. Wright<sup>24</sup>, C. K. Xu<sup>2,27</sup> & M. Zemcov<sup>2,9</sup>







Page++ 2012, *Nature*, 485(7), pp.213–216 See also: Seymour++ 2011, Hatziminaoglou++ 2010, Dai++ 2012



### SDSS Stripe 82







Viero++2013, Herschel Stripe 82 Survey; arXiv:1308.4399 Find Maps/Catalogs at: <a href="http://www.astro.caltech.edu/hers">http://www.astro.caltech.edu/hers</a> ACT SHELA **SpIES** HETDEX SDSS Stripe 82 150 PL: Viero

<u>Also:</u>

- DES/HSC
- VHS/VICS82
- VLA
- Wiggle-z
- LSST

Includes:

- Clusters
- QSOs
- LRGs
- maxBCGs
- HI

- Optical Spectra:
  - Lyman Alpha Forest
  - DLAs/Mg2/CIV

# END!