

SPIRE Spectrometer Data Processing (The Pipeline)

Nanyao Lu NHSC/IPAC (on behalf of the SPIRE ICC)

Goals

- Overview of SPIRE FTS spectrometer.
 - How photons are registered as bolometer voltages.
- Overview of the standard FTS pipeline by flow charts, and some mix of calibrations and data examples.
 - How a measured voltage interference pattern (interferogram) in time is transformed to the source spectrum.

Helpful Resources at Your Fingertips

- HIPE -> Help contents:
 - SPIRE Data Reduction Guide (SDRG):
 - Sect. 6. SPIRE spectroscopy mode cookbook.
 - Sect. 3. SPIRE observational context data structure.
 - Sect. 4. SPIRE calibration data.
 - SPIRE Pipeline Specification Manual
 - Useful for looking up some details of a pipeline module.
 - SPIREinstrument and calibration page
 - Up-to-date SPIRE information at HSC.
 - SPIRE Observer's Manual.

SPIRE

SPIRE Spectrometer

Fourier Transform Spectrometer (FTS): The entire spectral coverage of 194-671 micron is observed in one go!

esa

nhsc

SPIRE

Probing Warm and Dense Molecular Gas

Fourier Transform: Interferogram to Spectrum

Discrete Fourier Transform: $B(\sigma) = \sum_{i} I(x_i) \exp(-i2\pi\sigma x_i) \Delta x$

Real World: Finite Interferogram

Two Bolometer Detector Arrays

Two dead detectors

Beam = 29"- 42"

Foot print on sky

esa

Observing Modes

HIFICAC

nhsc

SPIRE

SPIRE FTS Observations

Each observation is divided into individual *Building Blocks*:

- Observations of sparse sampling: Your data is taken here!
 Initialization + Move BSM FTS scans + PCAL flash End
- All other observations (i.e., intermediate or full spatial sampling or raster):

At each of the multiple telescope pointings (if a raster map):

esa

The FTS Pipeline – Overall Flow Chart

Spectrometer Detector Time Line

Pipeline Step 1: Modify Timelines

Pipeline Step 3: Modify Interferograms

Pipeline Step 4: Fourier Transform

Apply the Fourier Transform to each interferogram to create a set of spectra for each spectrometer detector. The spectra are in units of V/GHz, not yet flux calibrated.

What is in the Raw Spectrum?

Instrument Background Emission

(389,4.740)

400 sampleTime(TAI)

100

esa

Page 19

SPIRE

Telescope Background Emission

esa

SPIRE

Telescope Background Emission: A Typical Case

nhsc

PACS

HIFICAC

Telescope model

Flux calibration Scheme

 $\hat{\boldsymbol{R}}_{tel}$

Level-1 spectrum

Brightness in W/m²/Hz/sr assumes extended emission

Telescope **R**SRF

Instrument model and RSRF important for SLW (T ~ 4-5 K)

[S - R _{inst}M_{inst}] - M_{tel}

Level-2 spectrum

Flux Density in Jy assumes point-like emission

$$f = C_{point} I$$

Point source conversion factor (= R_{tel}/R_{point})

RSRFs are empirically derived by observing a source with a known spectrum and dividing by a model:

R_{tel}: Dark Sky (= the telescope) **R**_{point}: Uranus

Pipeline Step 5: Modify Spectra

* Both unapodized and apodized spectra [using the default apodization func. NB(1.5)]

SPIRE

Pipeline Step 6: Create Level-2 Products

* Both unapodized and apodized data [using the default apodization func. NB(1.5)]

HIFICIA

esa

Calibration Accuracy

- Flux accuracy for point source on the central detectors
 - 1% absolute flux accuracy w.r.t. Uranus (after pointing correction).
 - 3-4% accuracy of the Uranus model.
 - Pointing-related errors (e.g., 3% in SSW for 2" pointing offset)

Total error: $\sim 6\%$.

(Note: Additive continuum offset uncertainty: ~0.4 Jy, affecting faint sources; 2% additional error for observations in the bright-source mode.)

- Flux accuracy for maps:
 - Additional uncertainty from variations among detectors and less accurate calibration of outer detectors.
 - Overall repeatability is seen to be $\sim 7\%$.
- Wavelength calibeartion:
 - 5 7 km/s for line velocity.

Note: Model fluxes are much more accurate for planets than for asteriods

Beam Profile

Extended vs. Point Source Flux Calibration

