

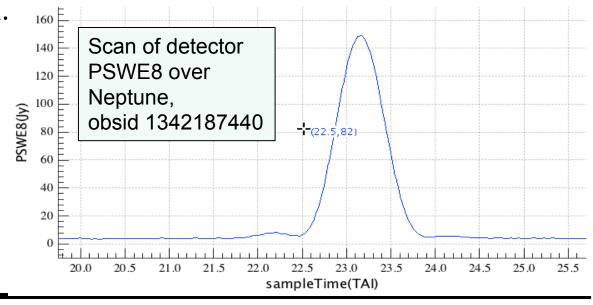
Point Source Photometry (Using HIPE)

Kevin Xu NHSC/IPAC on behalf of the SPIRE ICC

Outline

- Timeline (Level-1) Fitting (Recommended)
- Aperture Photometry on Maps (Level 2, 2.5, 3)
- Source Detection & Photometry in Blank Fields
 - HIPE Task: sourceExtractorSussextactor
 - HIPE Task: sourceExtractorDaophot

Reference: Section 5.7, "SPIRE Data Reduction Guide"

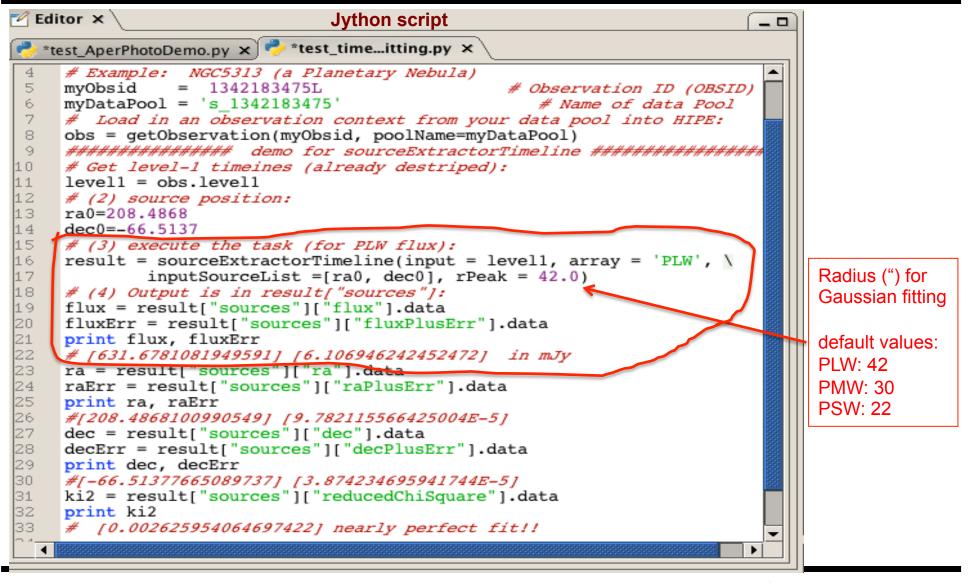


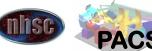
SPIRE Point Source Calibration

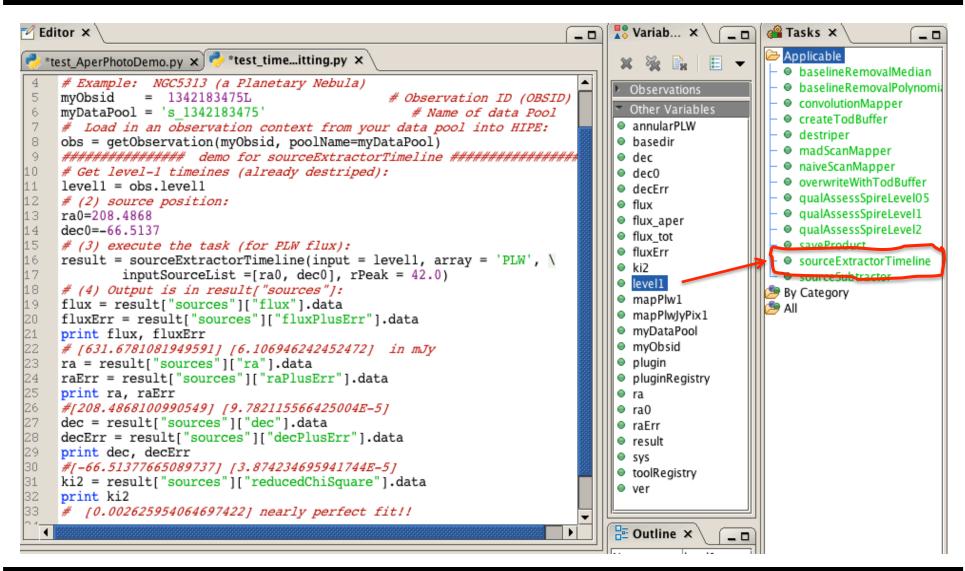
- Standard Calibration Source: Neptune
- Method: calibration observations (in fine-scan mode) are so designed as every bolometer can see the source multiple times and measure the deflection of the source with better than adequate sampling. The calibration is then defined by relating the deflection peak to the source flux.
- Units: Jy/Beam
- Error: 6%
 - 2% random error
 - 4% model error

Timeline Fitting (Recommended for Point Source Photometry)

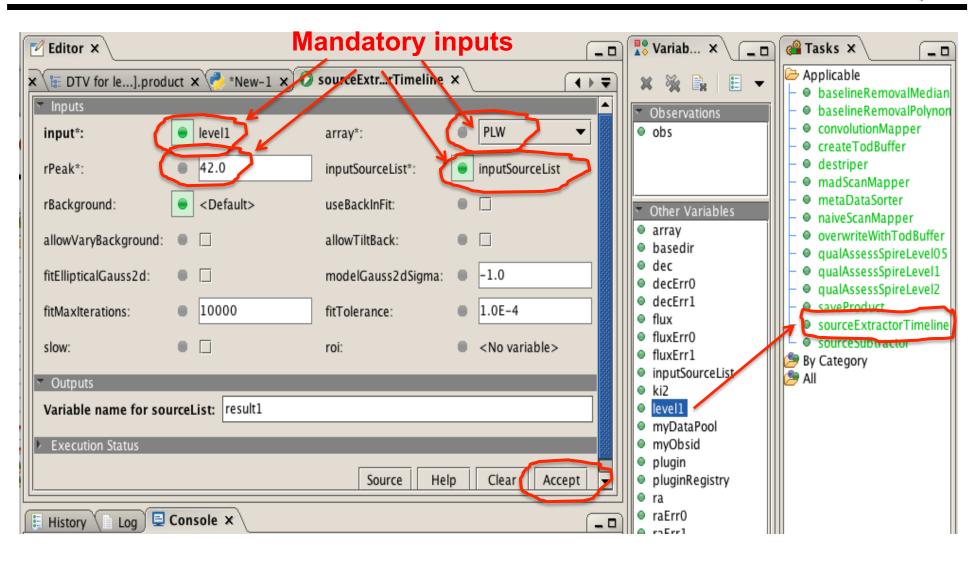
- Inputs:
 - Level 1 timelines (consist of measurements of individual bolometers before map-making)
 - Initial guess of the coordinates of the source
- **Outputs:** source flux & position (best-fit)
- Algorithm: fitting individual measurements near the source position with a 2-d Gaussian function (a good match to the inner part of the PSF)
- Advantage over photometry using maps: avoid biases introduced by map-making (e.g. pixelization)
- **HIPE Task:** sourceExtractorTimeline


esa


sourceExtractorTimeline



sourceExtractorTimeline: GUI



sourceExtractorTimeline: GUI

Result (a product):

🗹 Editor 🗙 🔪				🚦 Variab.	×\ _=
🟓 *test_AperPhot	x 🖗				
SourceListData	Observa	itions			
Meta Data name	value	unit	description	 Other Va plugin pluginR ra ra0 raErr result 	-
▼ Data	result1["sources"]			 result1 sourcet sys toolReg 	
► ● sources ⊕ 2 History	Index ra [deg] dec [deg] raPl 0 208.486866.5137 9.78		decPlusErr ▲ flux [mJy] fluxPlusErr .874234695631.6781081 6.1069462. 	Name Class Package	e × C result1["sou SourceListD herschel.ia.

Reminders:

- Flux error: should add (quadratically) the calibration error (6%).
- Flux: color correction (for spectra not in the form of $f_v \sim v^{-1}$).

Color corrections are described in the SPIRE Data Reduction Guide (Section 5.7.1.6)

Spectral Index	PSW Correction	PMW Correction	PLW Correction
(F _{nu} =nu ^{alpha})			
-4	0.94071	0.94049	0.87029
-3.5	0.95492	0.95471	0.89817
-3	0.96753	0.96734	0.92392
-2.5	0.97844	0.97827	0.94725
-2	0.98755	0.98741	0.96787
-1.5	0.99476	0.99468	0.98553
-1	1.00000	1.00000	1.00000
-0.5	1.00321	1.00332	1.01110
0	1.00434	1.00459	1.01868
0.5	1.00337	1.00380	1.02266
1	1.00028	1.00093	1.02299
1.5	0.99507	0.99599	1.01969
2	0.98777	0.98900	1.01282
2.5	0.97843	0.98002	1.00249
3	0.96710	0.96910	0.98887
3.5	0.95385	0.95632	0.97215
4	0.93878	0.94176	0.95257
4.5	0.92198	0.92553	0.93040
5	0.90359	0.90773	0.90592

Color correction table

 The flux (to be corrected) should be multiplied by the correction factor found in the table.

Checklist for timeline-fitting photometry

- Use the Level 1 timelines
- □Supply a starting position
- □Run the sourceExtractorTimeline Task
- □Apply color correction as needed

Outline

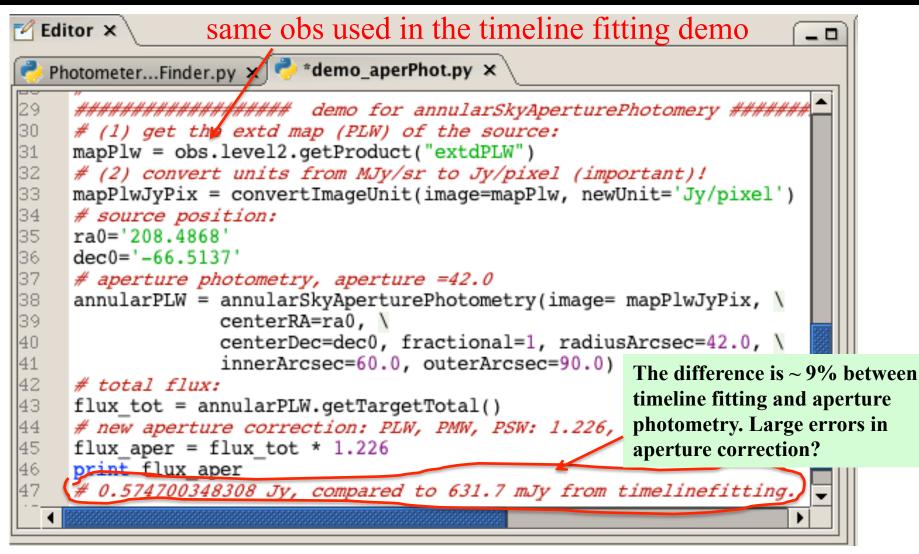
- Timeline (Level-1) Fitting
 - SPIRE Point Source Calibration
 - HIPE Task: sourceExtractorTimeline
- Aperture Photometry on Maps (Level 2, 2.5, 3)
 - SPIRE Extended Maps (extdPxW)
 - Hipe Task: annularSkyAperturePhotometry
- Source Detection & Photometry in Blank Fields
 - HIPE Task: sourceExtractorSussextactor
 - HIPE Task: sourceExtractorDaophot

Aperture Photometry on Maps

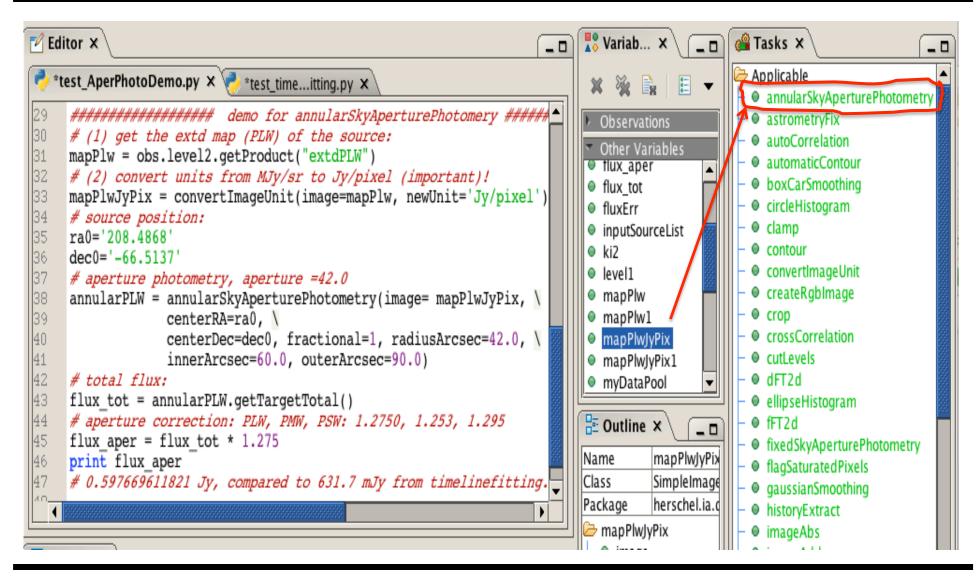
- Applicable to maps in level 2, level 2.5, and level 3
 - Always use extended maps (e.g. extdPLW)

(this also applies when using your own aperture photometry tools)

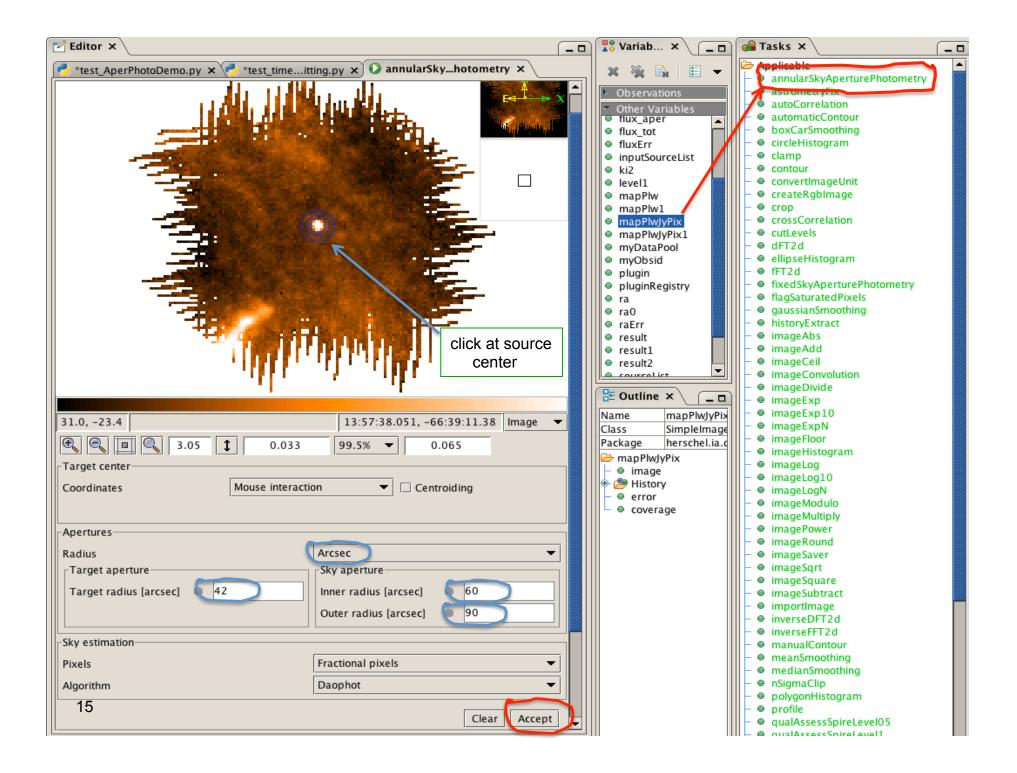
- extended (extd) maps vs. point-source (psrc) maps:
 - Units: MJy/sr vs. Jy/Beam
 - Flux calibration: scaling with the total counts of a source in the entire beam vs. scaling with the peak of the deflection of the source (more details will be duscussed in the next talk on extended source photometry)
- HIPE task: annularSkyAperturePhotometry



annularSkyAperturePhotometry



annularSkyAperturePhotometry: GUI



NHSC Data Processing Workshop – Pasadena 26th- 30th Aug 2013 annularSkyAperturePhotometry: Result

Editor ×			Variab ×		
× 🥐 *test_timeitting.py 🗙 🚺 annularSkyho	∢→₹	🗙 🔆 🕞 🗉 🛨			
Parameters		 Observations Other Variables 			
Key	Value		● ki2		
Target center (x,y)	(70.604, 67.655)	▲	● level1		
Target center (RA,Dec)	(13:53:56.534, -66:30:47.82)		mapPlw		
Target radius [pixels]	2.9999999999999143		mapPlw1		
Target radius [arcsec]	42.00		mapPlwJyPix		
Inner radius [pixels]	4.29		 mapPlwJyPix1 		
Inner radius [arcsec]	60.00		myDataPool		
Outer radius [pixels]	6.43		myObsid		
Outer radius [arcsec]	90.00		● plugin		
Sky estimation algorithm	Daophot		pluginRegistry		
Pixel type	Fractional		o ra		
Intensity unit	Jy/pixel	-	● ra0		
Results table		 raErr result result1 result2 			
Total [Jy] # pixels	Per pixel [Jy	Error [Jy]	sourceList		
Target 1.582732e+00 2.827433e+	01 5.597770e-02 1.258067e+00		● sys		
Background 2.848423e+00 7.212840e+01 3.943329e-02 1.046895e-03			● toolRegistry		
Target (bg subtr 4.677820e-01) 2.827433e+01 1.654440e-02 6.839693e-01			🔍 ver 📃 👻		
			📴 Outline 🗙 💦 🗖		
flux, need to do aperture correction Don't trust this error!!!!					

Checklist for aperture photometry

- Use the level 2 (or 2.5/3) extd maps
- Convert to Jy/pixel using
 - "convertImageUnit" task
- Run the annularSkyAperturePhotometry task
- □Apply an appropriate aperture correction
- □Apply color correction as needed

Outline

- Timeline (Level-1) Fitting
 - SPIRE Point Source Calibration
 - HIPE Task: sourceExtractorTimeline
- Aperture Photometry on Maps (Level 2, 2.5, 3)
 - SPIRE Extended Maps (extdPxW)
 - Hipe Task: annularSkyAperturePhotometry
- Source Detection & Photometry in Blank Fields
 - HIPE Task: sourceExtractorSussextactor
 - HIPE Task: sourceExtractorDaophot

Two Source Extractors in HIPE

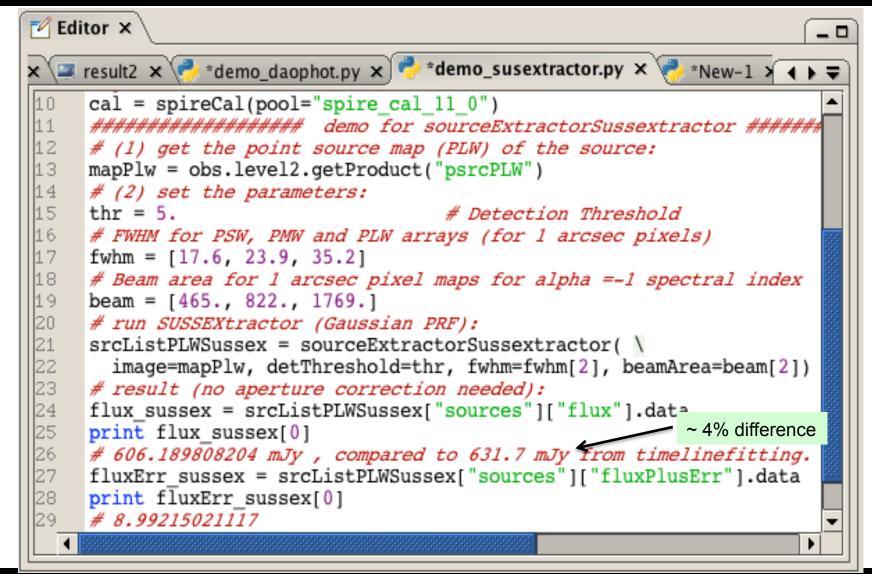
- sourceExtractorSussextractor
 - Sussextractor algorithm
 (Savage & Oliver 2007)
 - A Bayesian algorithm for detection
 - Flux density is peak of smoothed image
- sourceExtractorDaophot
 - Algorithms from IDL AstroLib
 - FIND for detection
 - APER for photometry (not PSF-fitting!)

The simplest operation of extractors uses the FWHM of each band

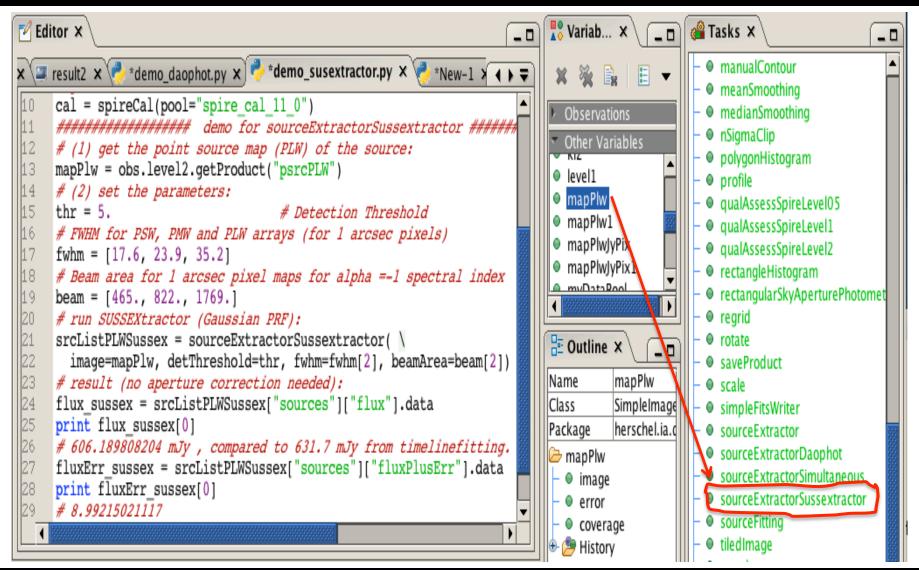
- Averages for nominal pixels:
 - 250um: 17.6 arcsec
 - 350um: 23.9 arcsec
 - 500um: 35.2 arcsec
- The fine-scale beam areas are needed (or the images must be converted)

- (465, 822, 1769) sq arcsec

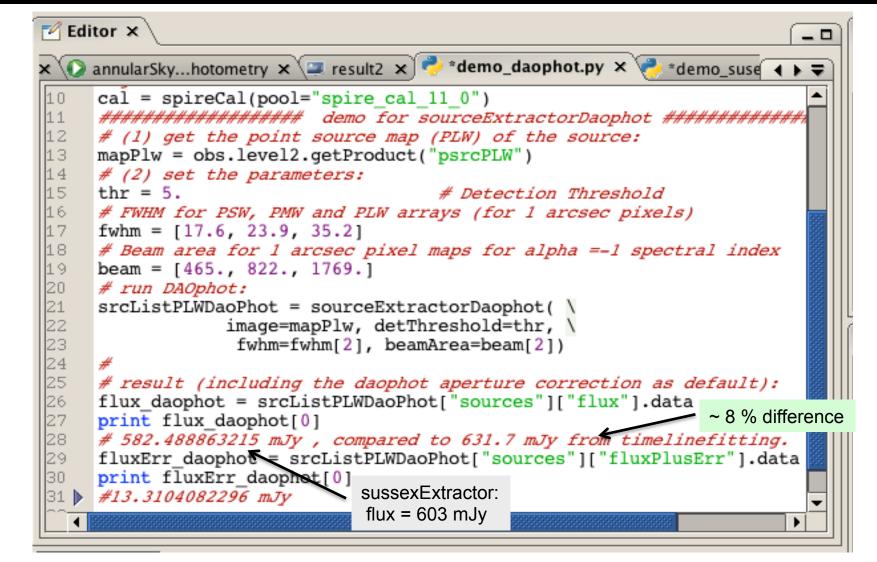
(can be found in Section 5.7, SPIRE Data Reduction Guide)



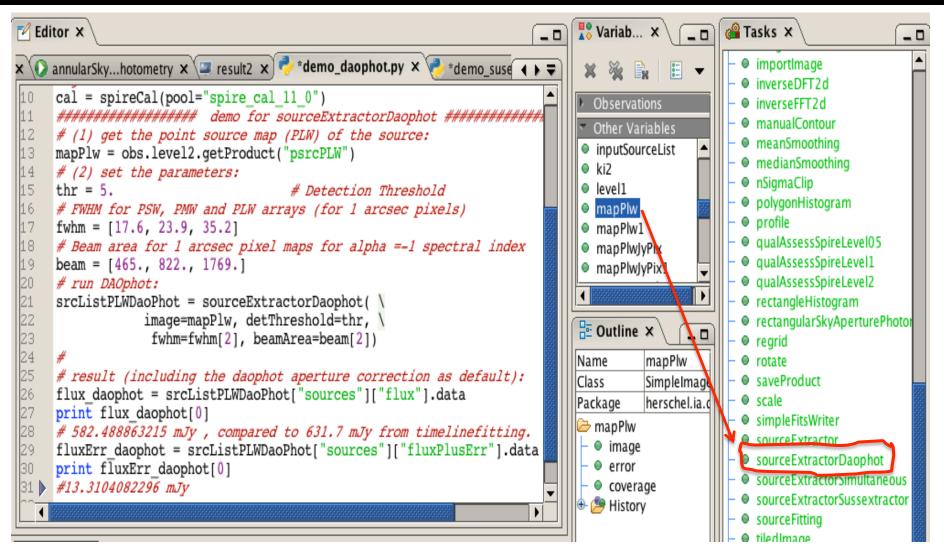
sourceExtractorSussextractor



sourceExtractorSussextractor



sourceExtractorDaophot



sourceExtractorDaophot

Summary

- Timeline-fitting photometry is highly recommended for point source photometry. It makes the best use of the information stored in individual measurements, and the results are free from biases introduced by the map-making.
- The flux measured with aperture photometry using HIPE task annularSkyAperturePhotometry is ~9% different from the result of timeline-fitting photometry, suggesting large uncertainties in the aperture correction.
- For sources in blank fields, the HIPE task sourceExtractorSussextractor provides reasonable measures for the flux and error, while results of HIPE task sourceExtractorDaophot are not as good.

