

SPIRE Broad-Band Photometry Extraction

Bernhard Schulz (NHSC/IPAC)

on behalf of the SPIRE ICC, the HSC and the NHSC

Contents

- Point Source Photometry
- Choices
- Extended gain correction factors
- Zero-point corrected extended flux maps
- Convert point source map to extended source fluxes.
- Correction factors to take into account
 - Color correction
 - Omega correction
 - Aperture correction
 - Background correction
- Derive aperture correction factors for semi extended sources
- Uncertainties

Point Source Photometry

- The SPIRE calibration is based on point source photometry (Prime calibrator: Neptune)
- Standard SPIRE unit is Jy/beam
- When a detector is scanned centrally over a point source, the peak deflection of the signal timeline equals the brightness of the source.
- The spire broad-band photometry is quantified as monochromatic flux density at a reference wavelength (250, 350, 500 μ m) assuming a reference spectrum of νF_{ν} = const.
- For a different reference spectrum a color correction must be applied.

Scan of detector PSWE8 over Neptune, obsid 1342187440

The Right Photometry Choice

- For point sources there are several choices and it depends a bit on the task at hand. Generally the Timeline Fitter gives the most accurate results.
- For large and small extended sources there is only aperture photometry.
- The SPIRE Level 2 products fortunately already contain a product that comes in extended source units MJy/sr, ready for aperture photometry.

Timeline Fitter for Point Sources

Illustration of Level 1 scans across a point source (log color scale) 10"

- Level 1 scan grid is fitted by 2D Gaussian
- Only readouts from core area and the background annulus are used for the fit.
- Annuli begin after 2nd Airy ring and cover an area comparable to core area.
- It is good to allow the background level to vary and to use the background annulus in the fit.
 - Example:
 - sourceList2 = sourceExtractorTimeline(input=obs.level1, array='PSW', rPeak=22.0, inputSourceList=sourceList1, allowVaryBackground=True, useBackInFit=True, rBackground=Double1d([70,74]))

Background Annulus

Optimal Parameters	PSW	PMW	PLW		
Core radius ["]	22	30	42		
Inner radius ["]	70	98	140		
Outer radius ["]	74	103	147		

Sussextractor for Point Sources

- Source detector and extractor based on Bayesian model selection and information criterion (Savage & Oliver 2007, ApJ 661, 1339).
- The tool performs both, source detection, background estimation, and photometric evaluation.
- Uses Gaussian PRF model that is either internally generated or user-supplied.
- The default PRF size was increased from 5x5 to 13x13 pixels in HIPE 12.
- New studies suggest that the optimum may be at 9x9 pixels, based on the photometric consistency of results obtained in simulations with different PRF sizes.

SPIRE

Zero-Point Correction of Extended Source Maps

- SPIRE and Planck-HFI overlap in SPIRE filters at 350 and 500mm (HFI 857 and 545 GHz filters).
- Planck HFI is using photometric gains from Uranus and Neptune radiative models and zero-levels from correlation of HI (21cm) gas column density with CIB mean level added (Planck Collaboration VIII. 2013, In prep.)
- Latest analysis shows very good correspondence of SPIRE and HFI photometric gains. We still multiply the HFI 545GHz map by 0965 for consistency.
- The SPIRE standard pipeline uses fits to gain and color corrected HFI maps to provide absolute flux offsets in the extended flux map products

Planck HFI

Maps

applyRelativeGains

destriper

– one offset value added to a map.

nhsc

9

baseline

corrected

timelines

l evel 1

Apply Gain Factors

Aperture Photometry

- Aperture photometry sums up map pixels, i.e. expects the map signal in extended source units like MJy/sr, Jy/"^D, or Jy/pixel.
- The solid angle needed for the conversion is color dependent and was derived from large fine scan maps (1" pixels) of Neptune that go out to 700" radius.
- The extended flux source maps in the HSA are converted for a $v F_v$ =const. spectrum and corrections need to be applied to aperture photometry.
- Color correction:
 - Source SED different from assumed reference spectrum v F_v =const.
- Aperture correction
 - Correction for Flux lost outside of integration aperture.
- Background correction
 - Correction for flux of the beam still inside of the annulus where backround is determined.
- Omega correction
 - Correction for change in effective solid angle when source SED is different from $v F_v$ =const.

Solid angles in [arcsec^2]	PSW	PMW	PLW
Measured with Neptune spectrum	450	795	1665
SPIRE photometer reference spectrum (nu*F_nu = const.)	465	822	1768

See: http://herschel.esac.esa.int/twiki/bin/view/Public/SpirePhotometerBeamProfile

Aperture Photometry on Point Sources

extdPxW [MJy/sr]

Best to start with extended source map

Solid angles in [arcsec^2]	PSW	PMW	PLW
SPIRE photometer reference spectrum (nu*F_nu = const.)	465	822	1768

SPIRE

Aperture Correction Factors

nhsc

Parameters for Point Source Photometry

Algorithm	FWHM (arcsec)	Beam ^{^1} Area (arcsec ²)	Detection Threshold	Rpeak (arcsec)	Torus (arcsec)	Aper Corr	
SUSSEXtractor	17.6 23.9 35.2	N/A	\$	N/A	N/A	N/A	use with point source map
DAOphot	18.4 25.1 36.9	465 823 1769	\$	default or 22 30 42	60-90	Auto or 1.2620 1.2197 1.1897	use with extended source map
Timeline Fitter	N/A	N/A	N/A	22 30 42	70-74 98-103 140-147	N/A	use with Level 1 data of point source map
Aperture Photometry	N/A	465 823 1769	N/A	22 30 42	60-90	1.2620 1.2197 1.1897	use with extended source map

The Useful script "Photometer_Photometry.py" is a good example how to do point source photometry in a practical case.

Note that the script does not yet reflect some of the optimized parameters in this table.

SPIRE

Aperture Photometry on Extended Sources

nhsc

Uncertainties

- Uncertainty in the derived flux
 - Includes the instrument
 - Confusion noise
 - (minimum of about 5 mJy for point sources)
 - Background estimate
- Point Sources (based on peak photometry with Timeline Fitter)
 - 2% statistical reproducibility
 - 4% absolute level of Neptune model
 - (systematic)
- Extended Sources (assuming aperture correction is understood)
 - 2% statistical reproducibility
 - 4% absolute level of Neptune model
 - (systematic)
 - 4% uncertainty in solid angle determination
 - (systematic)
 - This one will be substantially reduced in the next version.

Point Source Photometry Notes

- Point source maps are calibrated to produce equal peak signals for the same point source brightness.
- Extended flux maps are calibrated to produce equal signals for the same flux density filling the entire detector beam.
- Timeline Fitter, Sussextractor and a Gaussian Fit are estimates of the peak and should be applied to point source calibrated maps [Jy/beam].
- Daophot, or any other form of aperture photometry, regardless of whether it is applied to a real point source or extended source, should be used with extended flux calibrated maps [MJy/sr].
- The important difference between both types of maps is the Extended Gain Correction, not the units.

