

SPIRE Spectrometer Data Reduction: Special Cases

Nanyao Lu NHSC/IPAC (On behalf of the SPIRE ICC, HSC & NHSC)

Topics to Cover

- Data reprocessing ---- Do you generally need to reprocess FTS data yourself (for example, to use more up-to-date calibration tables)?
- Special cases that may call for additional data processing with available scripts/tasks in HIPE.
 Examples:
 - Spectral line fluxes: unresolved vs. partially resolved
 - Continuum of faint sources
 - Point source vs. semi-extended sources

Do you need to reprocess your FTS data?

Normally, the answer is NO if you have data from HIPE 11 and onward. However,

 Both calibration and pipeline are still being improved at this point. If you particular data might benefit from reprocessing with the latest calibration tree available, please feel free to contact NHSC helpdesk. We usually respond nicely and very promptly.

NHSC Workshop on HSA Data Oct 6-10, 2014

SPIRE

Quick Noise Assessment May be Useful

esa

Topics to Cover

 Data reprocessing --- Do you generally need to reprocess FTS data yourself?

- Additional data processing with available scripts/tasks in HIPE: some special cases to consider
 - Spectral line fluxes: unresolved vs. partially resolved
 - Continuum of faint sources
 - Point source vs. semi-extended sources

SPIRE Data Reduction Guide (DRG)

General SPIRE data info

SPIRE/FTS data structure and processing, and data analysis receipes

Spectrometer Useful Scripts

- Array Footprint Plot
- Background Subtraction
- Line Fitting
- Thumbnail Mosaic Plot
- Convolve Spectrum
- Noise Estimate
- Cube Fitting
- Combining PACS and SPIRE spectra

Topics to Cover

- Data reprocessing --- Do you generally need to reprocess FTS data yourself?
- Additional data processing with available scripts/tasks in HIPE: some special cases to consider
 - Spectral line fluxes: unresolved vs. partially resolved
 - Continuum of faint sources
 - Point source vs. semi-extended sources

NHSC Workshop on HSA Data Oct 6-10, 2014

SPIRE

Spectral Line Fluxes

Hands-on exercise 1

Line fitting script (for unresolved lines)

- Fit continuum and lines simultaneously
- SINC profiles for lines
- Polynomial for continum

- Interactive line fitting (both unresolved & partially resolved lines)
- Cube fitting script (to fit one or more lines in a cube)

esa

See a demo on Thursday!

Line Fitting (for Unresolved Lines)

HIPE SPIRE useful script: Spectrometer line fitting

Spectral Resolving Power Depends on Wavelength

NHSC Workshop on HSA Data Oct 6-10, 2014

SPIRE

PAC

esa

Partailly Resolved Lines

- The [NII] 205 µm line might become resolved if its intrinsic velocity is large enough (e.g., > 300 km/s)
- In this case, either use a SincGauss model to fit the line (best if S/N is high), or apply a correction factor to compensate for the flux underestimate assuming an intrinsic line width (best if S/N is poor)

Fit with SINC convolved with Gaussian (SincGauss model)

Hifizie

SincGaussan to Sinc Flux Ratio

SPIRE

Interacvtive Line Fitting: SincGauss Profile

esa

 Works best when S/N is high.

•

MiffiQee

For fainter lines, it might be better to use a SINC profile for fitting, and then correct the resulting flux for an estimated velocity width (see SPIRE DRG Sect. 7.10.7 for more info).

Topics to Cover

- Data reprocessing --- Do you generally need to reprocess FTS data yourself?
- Additional data processing with available scripts/tasks in HIPE: some special cases to consider
 - Spectral line fluxes: unresolved vs. partially resolved
 - Continuum fluxes of faint sources
 - Point source vs. semi-extended sources

Faint Point-like Targets

Faint sources:	a few to < ~10 Jy;			
Medium sources:	~10 to <~100 Jy.			

- Checking the source extent
 To make sure it is a point source
- Further background subtraction
- Comparing with the photometer

Detector Footprint on Sky

Useful for visualization of the extent and relative location of the target w.r.t. the detector array.

Page 17

NHSC Workshop on HSA Data Oct 6-10, 2014

SPIRE

Examples of Point-source Spectra

Residual Telescope Emission Removal: Using Surrounding Channels

Using a median spectrum from the co-aligned detectors as the residual telescope spectrum. This (or a polynomial fit to it) is then subtracted

 This (or a polynominal fit to it) is then subtracted from the spectrum of the central detectors.

Page 8 Jan 2012

Background Subtraction => Better Continuum

	-
Original data	— Dark subtracted
Consistent official and the state	Dark subtracted
—— Smoothed off-axis subtracted	

1400

1500

SPIRE

Comparing with SPIRE photometer

HIPE task SpecMatchPhot

esa

Synthetic photometry also output in a table:

Synthetic photometry results									
🔻 Meta Data									
None									
🕆 Table Data									
Index	names []	spec250 [Jy]	spec350 [Jy]	spec500 [Jy]	phot250 [Jy/beam]	phot350 [Jy/beam]	phot500 [Jy/beam]		
0	SLWB2	0.5524880934532026	2.2750690830393063	NaN	1.4595235477934987	4.5625949527907	14.688015400555697 -		
1	SLWB3	1.7079940700571916	2.900204401489005	NaN	1.4595235477934987	4.5625949527907	14.688015400555697		
2	SLWC2	0.7795710130592949	2.4846351262954545	NaN	1.4595235477934987	4.5625949527907	14.688015400555697		
3	SLWC3	3.5301211206430834	7.208739635225893	NaN	1.4595235477934987	4.5625949527907	14.688015400555697		
4	SLWC4	2.271641002463886	3.1913230785009703	NaN	1.4595235477934987	4.5625949527907	14.688015400555697		
5	SLWD2	1.910852171027807	3.147223386802127	NaN	1.4595235477934987	4.5625949527907	14.688015400555697		
6	SLWD3	2.4930847414696724	3.41185471573297	NaN	1.4595235477934987	4.5625949527907	14.688015400555697		
7	SSWB2	NaN	NaN	1.7915315388884716	1.4595235477934987	4.5625949527907	14.688015400555697		
8	SSWB3	NaN	NaN	1 5853857093619672	1 4595235477934987	4 5625949527907	14 688015400555697		

nhsc

Hifizice

Topics to Cover

- Data reprocessing --- Do you generally need to reprocess FTS data yourself?
- Additional data processing with available scripts/tasks in HIPE: some special cases to consider
 - Spectral line fluxes: unresolved vs. partially resolved
 - Continuum fluxes of faint sources
 - Point source vs. semi-extended sources

Partially Extended Sources

- Effect of a semi-extended source
- What correction is needed?
- Semi-extended (flux) correction tool (SECT) in HIPE

FTS beam profile

See Makiwa et al. 2013, Applied Optics, 52, 3864

Identifying Possible Partially Extended Sources

• The spectrum shows kinks and discontinuities where the beam size changes

NHSC Workshop on HSA Data Oct 6-10, 2014

SPIRE

esa

Other possible causes for a spectral gap

Cases appropriate for using SECT (the semiextended source fluc correction tool) in HIPE.

(Caution: the CO lines, from warm/dense molecular gas, may arise from a more compact region than the cold dust contiuum.)

PACS

nhsc

Hifica

Task semiExtendedCorrector

Under applicable tasks:

PACS

Semi-extended Source Correction Tool

Units of the output spectrum are Jy "in the reference beam"

Semi-extended Source Correction Tool

Some remarks on using this tool:

- Works best on bright objects
- For faint objects, the continuum suffers an (additive) uncertainty on the order of 0.4 Jy. *It might be a good idea to try to reduce/remove this continuum offset using surrounding channels before applying the semi extended correction tool to your data*
- For galaxies, it is likely that warm CO lines come from a more compact region than (cold) dust continuum. Thus, if your interest is in CO lines, it is not always better to apply this correction tool to your spectrum

