

SPIRE Spectroscopy: An Introduction

Nanyao Lu NHSC/IPAC (on behalf of the SPIRE ICC, HSC & NHSC)

Topics Covered

SPIRE spectrometer

Pipeline data products

SPIRE Spectrometer

SPIRE Spectrometer

Fourier Transform Spectrometer (FTS): The entire spectral coverage of 194-671 micron is observed in one go!

HIFICAC

Two Bolometer Detector Arrays

Two dead detectors

Fourier Transform: Interferogram to Spectrum

Real World: Finite Interferogram

esa

SPIRE/FTS Interferogram

Pipeline with calibration products

Spectrum

Observing Modes

HIFICAC

nhsc

SPIRE

Mapping Observations

Hifice

Larger maps via Raster

Science Application Examples

CO Spectral Line Energy Distribution (SLED): Starburst vs. AGN Gas Heating

Warm CO Gas Emssion as a SFR Tracer

HIFICAC

esa

Hydrogen Fluoride HF (1-0)

- The HF (J=1-0) transition at 1.23 THz (243 um) is providing a new diagnostic probe of the molecular gas abundance, excitation, and column density toward infrared bright galaxy nuclei (Lord et al. 2014)
 - SPIRE/FTS detected HF(1-0) in emission in some galaxies, but absorption in others in a flux limited sample of 125 LIRGs of Lu et al. (2014a)

HIFICIA

[CII] 158um Line at High Redshift

Pipeline Data Products

SPIRE

SPIRE Data Reduction Guide (DRG)

nhsc

Hifizice

Observation Context

SPIRE FTS observation of CRL618: obs = getObservation(1342240019, useHsa=True)

Postage spectrum from the central detectors

SPIRE

Level-2 Products

Sparse Mode

Apodized spectrum: convolved with a smoothing function so that line profiles are approximately Gaussian

esa

Heads up: the observation context structure will be changed in HIPE 13!!!

nhsc

Hifixiad

Level-2 Products

What can you do next?

- If you have a point source, you can now work on deriving fluxes of spectral lines detected (see examples this afternoon and more on Thusrday morning)
- If you have a mapping observation, you can generate a line intensity map or extract a spectrum within an aperture (see talks/demos on Thusrday morning)
- Learn more about the calibration and special cases this afternoon

