NHSC HIFI DP workshop Caltech, 24 July 2014

HIPE 9.1.0 - dec File Edit Run Pipelines Scripts Window Tools Help 📬 🗁 📕 1 🗹 Editor 🗙 😡 doDeconvolution 🗙 🔚 decon_result 🗙 Spectrum1d Meta Data name value unit Actual name of the Way wavename frequency waveunit GHz Units of the WaveColun wavedescription Single Sideband Frequency Description of WaveCol Sampling width [GHz] bin_size 5.0E-4 Polarization polarization WBS-H 0.0010 Convergence tolerance tolerance 200 Maximum number of it max_iterations REJECT SCANS WITH SPURS Flag to reject scans, sul spur rejection 👻 Data decon_result decon result["ssb"] ssb 🔚 👜 🔍 \ 🖑 🎟 🎟 🖩 🏋 T gain redundancy Antenna Temperature 🗠 📂 History 8 2 E 0 E 580 590 560 570 Single Sideband Fre Console × History Log

Reference scheme: DBS mode. Total scans = 90 Total bad scans = 8 Total bad channels = 0 LO Frequency range: 563.4628422057649 GHz to 628.1299325462097 DeConvolving with gain fitting off... Min Chisquare = 0.005620092164812858 after 7 iterations. Done!!! HIPE> interim_output = doDeconvolution.interim_output HIPE>

Spectral Scans and Sideband Deconvolution

- Data collection in the Spectral Scan mode.
- What is sideband deconvolution and why it is necessary for HIFI data?
- General description of the algorithm

Outline

- Implementation within HIPE
- Workflow for spectral scans

Heterodyne observations

- Detectors are not able to directly measure flux at the frequencies of interest. But by mixing the signal from the sky with a local oscillator, we `downconvert' the frequency.
- $\cos(\omega)\cos(v_{LO)=0.5[\cos(\omega-\nu LO) + \cos(\omega+\nu LO)]}$
- When ω is the entire, unfiltered sky frequency, you end up being sensitive to TWO bandpasses. (cos(ν) = cos(- ν))

Related problem: How to observe a frequency range larger than the bandpass of the instrument?

What is being measured ->

Sky frequency

How it looks when collected->

What is being measured ->

Sky frequency

How it looks when collected->

Sky frequency

How it looks when collected->

What is being measured ->

Sky frequency

How it looks when collected->

What is being measured ->

What is being measured ->

Sky frequency

How it looks when collected->

IF

What is being measured ->

Sky frequency

How it looks when collected->

How it looks when collected->

IF

IF

Heterodyne observations

- Lower sideband spectrum is reversed and added
- Two frequency scales result in the DSB result
- The lines may blend but they can be recovered
- The continuum levels add (double) in the DSB
- The continuum slope is flattened but may be recovered (deconvolved)
- The noise adds in quadrature , increasing as sqrt(2)

- The problem is the following: Given a collection of double sideband data taken over several LO tunings, how do we recover the original 'sky' spectrum?
- Comito & Schilke (2002) provide an algorithm which has been successfully employed with ground based heterodynes.
- Has been implemented in CLASS + X-CLASS (Fortran based) but was converted to JAVA for use within HIPE. Upgrades to the algorithm have been almost exclusively within HIPE.

- Start with a guess of the answer a model with no assumptions for the SSB spectrum – flat
- "Observe it" using knowledge of the instrument
- compare the observations of the model with the real observations
- compute a chi square and a delta (differential) chi-square
- each model "spectral channel" was in part responsible for some of the chi square change
- follow the slope of the chi square downward (it's partial derivitive w.r.t. the channel flux (and optionally the sideband gain)
- new downward steps always move at right angles to previous ones in the Conjugate Gradient Method
- Stop, when solution converges asymptotically, as defined by the "tolerance"

<u>It's iterative</u>

doDeconvolution caveats

- Iteration requires that the data make sense.
 - Sufficient redundancy (~100% of the time)
 - No spurs
 - Compatible baselines
 - No (or well behaved) standing waves

Most work is done before deconvolution

* Inputs							
obs*:	۲	obs	lambda1_channels:	•	0.0		
obs2_array:	•	<no variable=""></no>	lambda2_gains:	•	0.0		
spectrometer:		WBS-H	cont_offset:	•	0.0		
tolerance:		0.001	diag_mode_on:	•			
max_iterations:		200	diag_scan_index:	•	5		
channel_weighting:	•		diag_dsb_freq:	•	USB 🔻		
ignore_bright_line:	•		plot_dsb:		NO_PLOT -		
spur_rejection:		REJECT_SCANS_WITH_SPURS					
gain:	•	GAIN_FIT_OFF_USE_PRESET			•		
outputNames:	•	decon_result myDecon interim_output myInterim					

atures not recommended at all (may be deprecated in a later re

ome features not used very often

The big-three data cleaning tasks

In order of importance

<u>Artifact</u>	<u>Solution</u>
Spurs, etc	FlagTool
Baseline drift	fitBaseline
Standing waves	fitHifiFringe

• The workhorse. Can also perform fitBaseline and fitFringe!

'intelligent' baseline subtraction

One approach to standing wave removal

Line contamination (DBS)

- DBS is the most common spectral scan mode.
- · Chopping onto an area with line flux can happen and should be checked

- Legacy value products
 - Phase 1: flagging by ICC and KP experts
 - Phase 2: baseline and fringe removal by experts (tentative)
- HIPE 13 processed data (Spring 2015) should have a good fraction of all Spectral Scans carefully flagged.

