

HIFI Intro Webinar Aug 24, 2014

(A) (I)SG (NASA

HIFI Spectral Maps

Pat Morris (NHSC)

- Familiarity with HIFI's mapping modes
- Inspection
- Cleaning the input spectra (baselines)
- Regridding
- Cube toolbox
- Image analysis
- Line fitting with the spectrum fitter tool

The Mapping AOTs schematically

The main purpose of the OFF positions is to provide baseline removal of drift + standing waves.

- The OFFs may sometimes be contaminated with line emission (most often CO and [CII], sometimes others because of the fixed DBS throw). You can check for this in the data --- response calibrated OFF spectra part of the data tree in HIPE ≥ 13.
- 2. The OFFs may sometimes not fully correct the ripples, due to short Allan times (rapid drift cross-over from radiometric noise).

C⁺ + 1900 GHz + continuum + drift

Effects of imperfect line scanning on OTF maps

• Drift and slew effects (over- / under-shoot after slews) producing departures along the intended scan path.

• Improvements in pointing reconstruction, better jitter characterizations, provide more reliable WCS in gridded cubes.

The "zig-zag" has components of slewing errors (not due to timing errors in HIFI).

Errors are projected in both α and δ .

The deviations are clearly correlated with the slews from OFF, Looks like slew \rightarrow deceleration \rightarrow scan transition bugs.

- The consequence is that sampling requested in HSpot is not perfect.
- New pointing reconstruction available in HIPE 13 for reassignment of attitudes, will reduce "zig-zag" pattern noise. will exhibit a form of "zig-zag"

The new pointing history reduces the zig-zag

C+ line fluxes in spectra extracted from the cube in a slice across the Orion Bar.

Red is based on New pointing and shows ~2x lower noise around an approximating (3rd order) fit to the flux gradient across the PDR.

- This is a tour. A detailed set of tutorials using HIPE will be given in NHSC's workshop for newcomers in October.
- Today:
 - 1. Load a H_2O and ¹³CO OTF map of massive SFR W51.
 - 2. Inspect metadata for the map layout on the sky, noise performance parameters.
 - 3. Visually ID "artifacts" in the Level 2 spectra.
 - 4. More discussion of artifacts (ripples).
 - 5. Regrid into spectral cubes.
 - 6. Show the Cube Spectrum Analysis Toolbox (CSAT)
 - 7. Highlight some image analysis tools.

• Familiarizing with the data tree for a spectral map, inspection of the Level 2 HTPs in Spectrum Explorer (for data quality / artifacts), and locating the metadata that describe the map pattern and expected noise.

2. HTP inspection

2. Important metadata

obs.refs["auxiliary"].product.refs["HifiUplinkProduct"].product["HifiUplinkParameters"]

6	🛓 obs.i	refs["ameters"]				_ 0	X								
Ĩ	t. obs.	obs.refs["ameters"] ×													
=	HifiUpl	ifiUplinkParameters													
	- Meta	Data													
	None	ne													
	🕆 Table	able Data													
	Index	name	value	unit	type	description									
	0	manLines	11	unit	iava lang Long	Number of man lines									
	1	mapLineSten	9.0	arcsec	java.lang.cong	Man line spacing	366								
a	2	mapReadouts	11	0.0000	java.lang.Long	Number of readouts per line									
ä	- 3	mapReadoutSep	9.6	arcsec	java lang Double	Line readout spacing									
Ř	4	noiseMinUsb	UNKNOWN	К	UNKNOWN	Predicted SSB Noise USB at minimum bandwidth									
B	5	noiseMaxUsb	UNKNOWN	ĸ	UNKNOWN	Predicted SSB Noise USB at maximum bandwidth									
Ē	6	noiseMinLsb	UNKNOWN	К	UNKNOWN	Predicted SSB Noise LSB at minimum bandwidth									
B	7	noiseMaxLsb	UNKNOWN	К	UNKNOWN	Predicted SSB Noise LSB at maximum bandwidth									
	8	noiseMinWidth	UNKNOWN	MHz	UNKNOWN	Minimum bandwidth for noise predictions									
nd	9	noiseMaxWidth	UNKNOWN	MHz	UNKNOWN	Maximum bandwidth for noise predictions									
0	10	tmbReference	789.0	К	java.lang.Double	Temperature (main beam) at noise reference frequency									
n	11	noiseRefFrequency	1108.0	GHz	java.lang.Double	Noise reference frequency									
ne	12	observingTime	3091	s	java.lang.Long	Observing time									
ne	13	offTime	471.6	s	java.lang.Double	Off source time									
	14	overheadTime	702.8	s	java.lang.Double	Overhead									
ic	15	totTimeEfficiency	77.3	%	java.lang.Double	Total time efficiency									
ffi	16	totNoiseEfficiency	44.2	%	java.lang.Double	Total noise efficiency									
n	17	driftNoiseContrib	9.0	%	java.lang.Double	Drift noise contribution									
-	18	refSelected	true		java.lang.Boolean	Sky reference selected									
's	19	fe_lof_0	1107.898	GHz	java.lang.Double	LO frequency selected									
56	20	oneGHzReference	true		java.lang.Boolean	One GHz noise estimation bandwidth									
or	21	hrsModeH	Nominal		java.lang.String	HRS resolution mode H									
	22	flyRefOffsetDec	0.0	arcmin	java.lang.Double	Sky reference offset declination									
ci	23	frame	heliocentric		java.lang.String	Redshift velocity frame									
rs	24	spectrometer	both		java.lang.String	Spectrometers used									
at	25	dec	14.51069444444445	degrees	java.lang.Double	Target declination J2000.0									
itt	26	fe_eff_res_max_0	0.3	GHz or km/s	java.lang.Double	Maximum width spectral resolution at noise goal									
	27	redshiftType	radio		java.lang.String	Redshift type									
) (28	flyRefOffset	true		java.lang.Boolean	Sky reference offset is relative									
ic	29	resolutionMhz	false		java.lang.Boolean	Resolution width units (true = MHz, false = km/s)	1996								
S	30	ra	290.922875	degrees	java.lang.Double	Target right ascension J2000.0									
) (31	decoff	14.5106782913208	degrees	java.lang.Double	Sky reference OFF declination J2000.0									
dt	32	fe_eff_res_min_0	0.3	GHz or km/s	java.lang.Double	Minumum width spectral resolution at noise goal									
	33	goalTime	2800	S	java.lang.Long	Goal observing time									
	34	flyNyquistSel	true		java.lang.Boolean	Spectral Map Nyquist sampling requested									
	35	raoff	291.0089416503906	degrees	java.lang.Double	Sky reference OFF right ascension J2000.0									
	36	redshift	59.5	redshift or km/s	java.lang.Double	Redshift value (km/s if redshiftType is optical or radio)									
	37	doingTime	true		java.lang.Boolean	Time estimation is based on observing time or rms noise goal									
	38	flyY	1.5	arcmin	java.lang.Double	Spectral map scan length requested									
	39	band	4b		java.lang.String	HIFI band									
	40	goalNoise	0.1	ĸ	java.lang.Double	Goal rms basline noise	-								

Selected key parameters are also stored in the observation context header.

Esp. for advanced searches in the HSA.

3. Artifacts in Maps

- Many maps are well-behaved. Some cases (treatable) that may come up:
- 1. Spurs or spurious response.

- Cataloged and visualizable in HSpot. Some are mission phase dependent.
- Some unruly but important LO freqs were stabilized by tuning mixer currents, gains.
- Normally avoided during observation planning of the selected LO setting, unless the feature was not known at the time, or the user had no options (or simply missed the warning).
- <u>Mitigations</u>: these regions are masked out during ripple fitting + correction. However only saturated IF frequencies are avoided during map (*spatial*) convolution.

- 2. Sub-band resonances.
 - Also cataloged, visualizable in HSpot. These are more common in the HEB bands 6 and (less frequently) 7.

- Band 6 isolated ripple usually in last 600-700 MHz of IF (sub-band 4).
- Mostly in 6b but also exists in upper end of 6a and lower end of 7a.
- <u>Mitigations</u>: might be treatable with the hebCorrection task --- under investigation.

- 3. Baseline distortions.
 - Generally at unstable LO frequencies, but not accompanied by large increases in noise. Thus line information is still usable.

WBS-H-USB - Dataset 20 - Row 0

- Typically in the diplexer bands (3, 4, 6, 7).
- <u>Mitigations</u>: treatable with baseline fitting (fitBaseline task), but information on the continuum (if present) is likely to be lost.

HIFERCC RASA Herschel Science Center

- 4. Residual standing waves + drift.
- More typical in bands, ranges, or at specific LO frequencies with instabilities or short Allan times.

- Map observing mode dependence is mainly in total power (OTF), if OFF calibration timing (sky and/or internal load measurements) do not well-match drift timescales.
- Also DBS Raster, if fast chop option was not used where high drift noise was expected.
- <u>Mitigations</u>: treatable with fitHifiFringe (sine waves, OK for optical standing waves), and hebCorrection task (non-sinusoidal electrical standing waves in Bands 6, 7) →

hebCorrection task

Level 2 WBS-V sub-band 2

HSA/SPG 11.1

Integrated C+

Integrated Continuum

- 1. OFF-source (sky) contamination
 - Observations using Position Switch (standard OTF, or in conjunction with either Load Chop or Frequency Switch), and DBS Raster (with 3 arcmin chop/nod to either side of the source) may sometimes pick up extended line emission, which becomes "chopped" from the ON-source data.

2. Pointing pattern noise

In OTF observations, this is the "zig-zag", caused by (a) problems with deceleration and transition to line-scanning; (b) low fidelity pointing reconstruction (deviations are smoothed over).

Present to different degrees in other modes, easiest to visualize in maps.

<u>Mitigation</u>: New pointing reconstruction algorithm uses gyro-drift estimation much better, resolves pointing history to better accuracy. The deviations don't go away, but lower attitude *history* errors helps convolution.

Better pointing products can be produced in HIPE 13, hopefully also in SPG 13/14 for the HSA.

- S/N is good experiment with oversampling to ~2 x Nyquist.
 - Remember that structures are resolvable to at least ~1/10 the beam size when S/N is very high.
 - Noise is computed on a map point basis; does not take the convolution into account (thus generally better than predicted).
 - Changing the pixel scale is the most common application, and we do not do a complete experiment with all possible parameters, e.g. altering WCS references. For this consult the HIFI DRG.

6. Cube Spectrum Analysis Toolbox (CSAT)

 Can extract spectra in various apertures, crop in frequency, create a PV map, convert the cube units (GHz to velocity), make a velocity map, and integrated intensity map. We can also subtract baselines in the CSAT (not as sophisticated as fitBaseline, but a good means to create a continuum map).

- Image analysis tools have been developed by PACS/SPIRE, usable on any HIFI 2D map image.
- Smoothing, contour overlays, source fitting, etc etc.

spectrum3							
	• T = \ • 1	auto line aut	o color ——	- ~	── [Wit	th Displayed 👻	
		x Spectrum Fitter GUI x props shift-click on plot element to change context					
		LAYER					
e (K					-	id pglid	
						name ZOrder	TotalModel
						O layerXY shownInLegend	V
Ten						LAYER STYLE	
			. k as	i ici i		chartiype color	LINECHARI [0, 178, 0]
1 3 0.0 Handrey and the state of the state	HANNING MANY	AMATIN WANTATA M	(MANNAP	he water	W.M	line stroke	SOLID 1
E transfer the second standard and the second standard standard standard standard standard standard standard s	an anala da a					dashArray ⊖ symbol	6.0,6.0
-0.5	1101.10 1101.15 1101.	symbolSnape symbolColor symbolSize	7				
1s	bfrequency (GHz)	legendSymbolSize ⊖ errorbar	NaN				
						errorbarCapSize	0
× spectrum3 × FitResult	1 1					x preview	
ALL 0 SFG-Type SFG-ID ModelType Indices Integrated	CParm_0 Name_0 V	/alue_0 StdDev_0	Name_1	Value_1	StdDev		
2 Residual							
4 Model 1 poly -0.0030020 5 DELETED	2.0 P0 -2.4	25060 0.000000E	P1 2	2.124667E	0.000000		
6 DELETED 0.0246576.	. Amplitude 2.07	70034E 2.985577E	Center	1.101165E	8.127078		
8 Model 5 gauss 0.0207590.	. Amplitude 7.13	35530E 1.930346E	Center	1.101129E	3.658480		
	00000001						
	2000000					<u> </u>	

Multi-component fitting can be done on individual spectra extracted from a cube, and applied to the entire cube if desired, creating products for each component.

