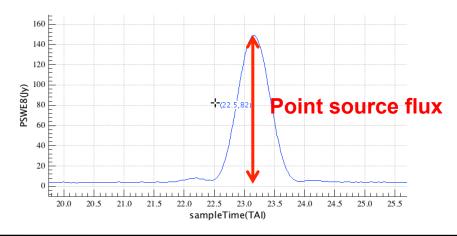


SPIRE Photometry

Bernhard Schulz (NHSC/IPAC)

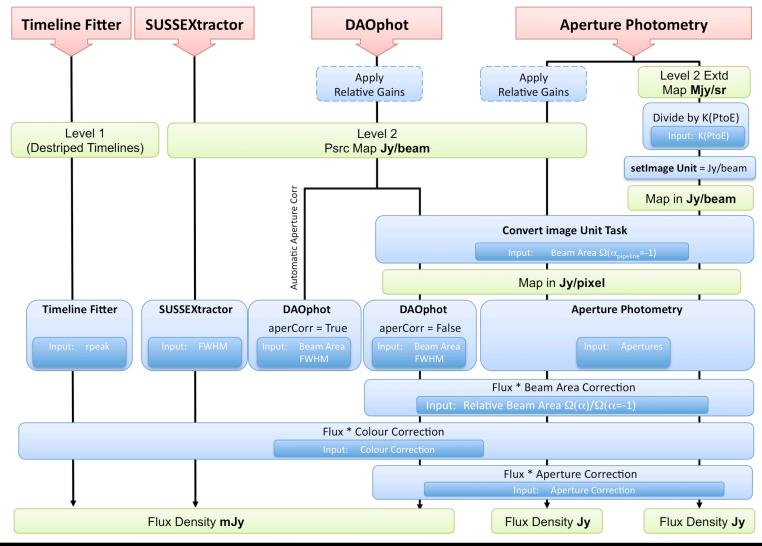
on behalf of the SPIRE ICC, the HSC and the NHSC



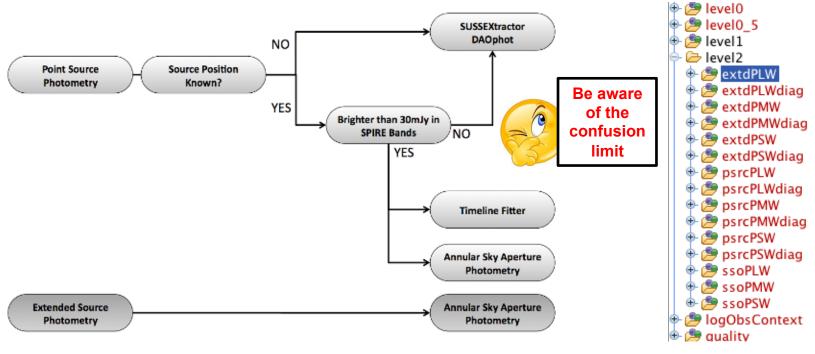
Point Source Photometry

- The SPIRE calibration is based on point source photometry (Prime calibrator: Neptune)
- Standard SPIRE unit is Jy/beam
- When a detector is scanned centrally over a point source, the peak deflection of the signal timeline equals the brightness of the source.
- The spire broad-band photometry is quantified as monochromatic flux density at a reference wavelength (250, 350, 500 μ m) assuming a reference spectrum of νF_{ν} = const.
- For a different reference spectrum a color correction must be applied.

Scan of detector PSWE8 over Neptune, obsid 1342187440

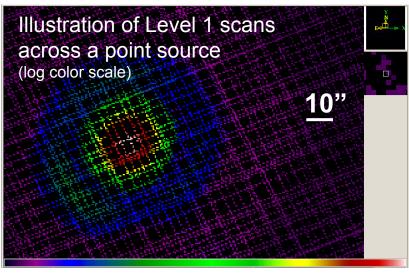


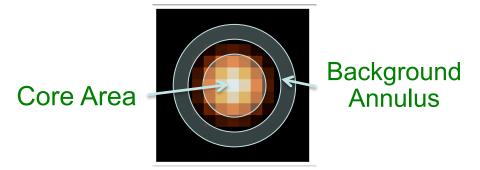
RECIPES FOR **SPIRE POINT SOURCE** PHOTOMETRY

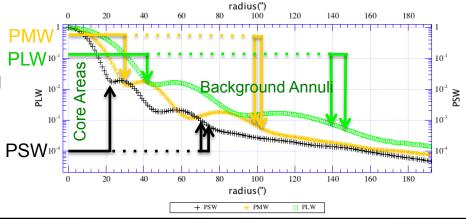


The Right Photometry Choice

- For point sources there are several choices and it depends a bit on the task at hand. Generally the Timeline Fitter gives the most accurate results.
- For large and small extended sources there is only aperture photometry.
- The SPIRE Level 2 products fortunately already contain a product that comes in extended source units MJy/sr, ready for aperture photometry.

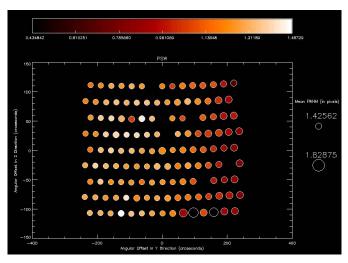


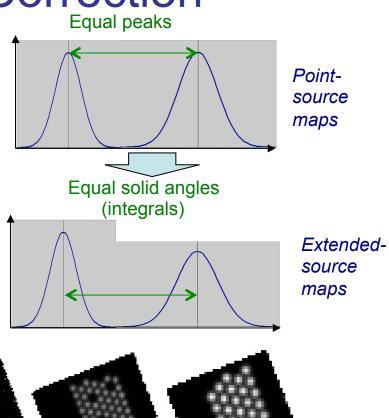



Timeline Fitter

- Level 1 scan grid is fitted by 2D Gaussian
- Only readouts from core area and the background annulus are used for the fit.
- Annuli begin after 2nd Airy ring and cover an area comparable to core area.
- It is good to allow the background level to vary and to use the background annulus in the fit.
 - Example:
 - sourceList2 = sourceExtractorTimeline(input=obs.level1, array='PSW', rPeak=22.0, inputSourceList=sourceList1, allowVaryBackground=True, useBackInFit=True, rBackground=Double1d([70,74]))

	PSW	PMW	PLW
Core radius ["]	22	30	42
Inner radius ["]	70	98	140
Outer radius ["]	74	103	147





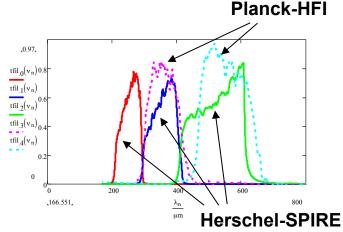
Extended Gain Correction

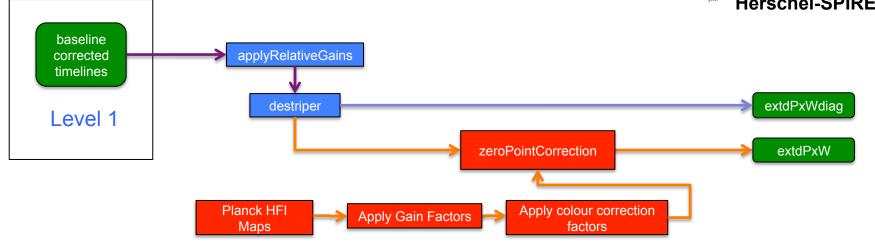
- Not all detector beam-profiles have the same width.
- Applying the Extended Gains equalizes the detector areas (instead of the peaks).
- The numbers are provided in the SPIRE calibration tree.
- These gain factors should be applied before destriping, and map-making.

PSW: FWHMs are exaggerated

PSW

PMW


PLW



Zero-Point Correction of Extended Source Maps

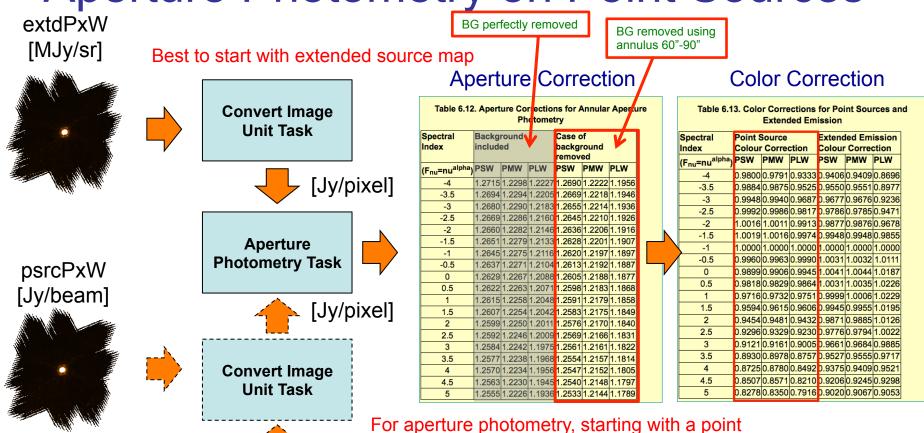
- SPIRE and Planck-HFI overlap in SPIRE filters at 350 and 500mm (HFI 857 and 545 GHz filters).
- Planck HFI is using photometric gains from Uranus and Neptune radiative models and zero-levels from correlation of HI (21cm) gas column density with CIB mean level added (Planck Collaboration VIII. 2013, In prep.)
- Latest analysis shows very good correspondence of SPIRE and HFI photometric gains. We still multiply the HFI 545GHz map by 0965 for consistency.
- The SPIRE standard pipeline uses fits to gain and color corrected HFI maps to provide absolute flux offsets in the extended flux map products
 - one offset value added to a map.

Aperture Photometry

- Aperture photometry sums up map pixels, i.e. expects the map signal in extended source units like MJy/sr, Jy/"□, or Jy/pixel.
- The solid angle needed for the conversion is color dependent and was derived from large fine scan maps (1" pixels) of Neptune that go out to 700" radius.
- The extended flux source maps in the HSA are converted for a v F_v =const. spectrum and corrections need to be applied to aperture photometry.
- Color correction:
 - Source SED different from assumed reference spectrum v F_v=const.
- Aperture correction
 - Correction for Flux lost outside of integration aperture.
- Background correction
 - Correction for flux of the beam still inside of the annulus where backround is determined.
- Omega correction
 - Correction for change in effective solid angle when source SED is different from v F_v =const.

Solid angles in [arcsec^2]	PSW	PMW	PLW
Measured with Neptune spectrum	450	795	1665
SPIRE photometer reference spectrum (nu*F_nu = const.)	465	822	1768

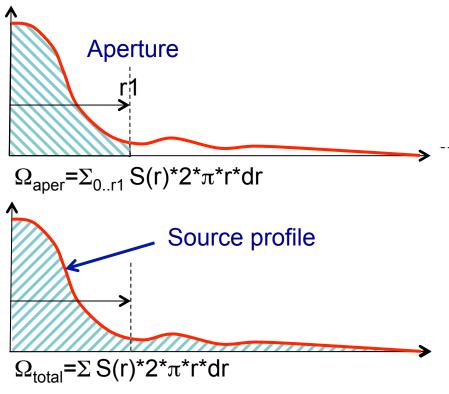
See: http://herschel.esac.esa.int/twiki/bin/view/Public/SpirePhotometerBeamProfile

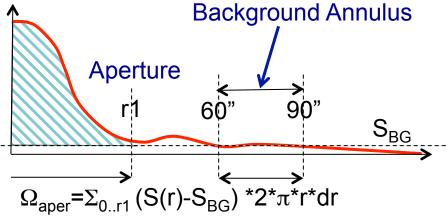


Aperture Photometry on Point Sources

Solid angles in [arcsec^2]	PSW	PMW	PLW
SPIRE photometer reference spectrum (nu*F_nu = const.)	465	822	1768

source map is not recommended but possible.





Aperture Correction Factors Explained

If background was perfectly known and subtracted.

Take into account error due to beam residual in background estimation.

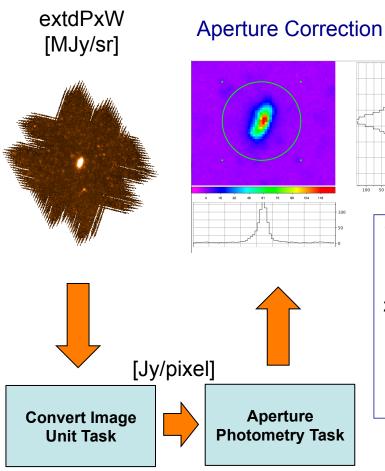
$$\mathsf{aperCorr} = \Omega_{\mathsf{total}} \, / \, \Omega_{\mathsf{aper}}$$

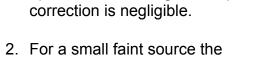
The same principles apply for both, point, and extended sources.

Parameters for Point Source Photometry

Algorithm	FWHM (arcsec)	Beam ^{^1} Area (arcsec ²)	Detection Threshold	Rpeak (arcsec)	Torus (arcsec)	Aper Corr
SUSSEXtractor	18.2 24.9 36.3		٧			
DAOphot		465 822 1769	V	1*FWHM	1.25-3 *FWHM	Auto or 1.2750 1.1933 1.2599
Timeline Fitter			N/A	22	300,350	
Aperture Photometry			N/A	30 42	60-90	1.2750 1.1933 1.2599

The Useful script "Photometer_Photometry.py" is a good example how to do point source photometry in a practical case.





Aperture Photometry on Extended Sources

Color+Omega Correction

Table 6.1	3. Colo			for Poi	nt Sou	rces ar
Spectral Index	Point Source Colour Correction			Extended Emission Colour Correction		
(F _{nu} =nu ^{alpha})	PSW	PMW	PLW	PSW	PMW	PLW
-4		0.9791	0.9333	0.9406	0.9409	0.8696
-3.5	0.9884	0.9875	0.9525	0.9550	0.9551	0.8977
-3	0.9948	0.9940	0.9687	0.9677	0.9676	0.9236
-2.5	0.9992	0.9986	0.9817	0.9786	0.9785	0.9471
-2	1.0016	1.0011	0.9913	0.9877	0.9876	0.9678
-1.5	1.0019	1.0016	0.9974	0.9948	0.9948	0.9855
-1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
-0.5	0.9960	0.9963	0.9990	1.0031	1.0032	1.0111
0	0.9899	0.9906	0.9945	1.0041	1.0044	1.0187
0.5	0.9818	0.9829	0.9864	1.0031	1.0035	1.0226
1	0.9716	0.9732	0.9751	0.9999	1.0006	1.0229
1.5	0.9594	0.9615	0.9606	0.9945	0.9955	1.0195
2	0.9454	0.9481	0.9432	0.9871	0.9885	1.0126
2.5	0.9296	0.9329	0.9230	0.9776	0.9794	1.0022
3	0.9121	0.9161	0.9005	0.9661	0.9684	0.9885
3.5	0.8930	0.8978	0.8757	0.9527	0.9555	0.9717
4	0.8725	0.8780	0.8492	0.9375	0.9409	0.9521
4.5	0.8507	0.8571	0.8210	0.9206	0.9245	0.9298
5	0.8278	0.8350	0 7916	n anan	0 9067	0 9053

aperture can be large and aperture

1. For a large bright source the

aperture can not be too large and the aperture correction must be derived by modeling the source flux distribution to obtain precise results.

Uncertainties

- Uncertainty in the derived flux
 - Includes the instrument
 - Confusion noise
 - (minimum of about 5 mJy for point sources)
 - Background estimate
- Point Sources (based on peak photometry with Timeline Fitter)
 - 2% statistical reproducibility
 - 4% absolute level of Neptune model
 - (systematic)
- Extended Sources (assuming aperture correction is understood)
 - 2% statistical reproducibility
 - 4% absolute level of Neptune model
 - (systematic)
 - 4% uncertainty in solid angle determination
 - (systematic)
 - This one may go away as it can in principle be bootstrapped out.

Point Source Photometry Notes

- Point source maps are calibrated to produce equal peak signals for the same point source brightness.
- Extended flux maps are calibrated to produce equal signals for the same flux density filling the entire detector beam.
- Timeline Fitter, Sussextractor and a Gaussian Fit are estimates of the peak and should be applied to point source calibrated maps [Jy/beam].
- Daophot, or any other form of aperture photometry, regardless of whether it is applied to a real point source or extended source, should be used with extended flux calibrated maps [MJy/sr].
- The important difference between both types of maps is the Extended Gain Correction, not the units.

