

SPIRE Photometer Map Making

Kevin Xu NHSC/IPAC on behalf of the SPIRE ICC

- Baseline Removers:
 - Destriper (minimizing stripes iteratively, pipeline default)
 - Median baseline remover
 - Polynomial baseline remover
- Mapmakers:
 - Naïve Mapper (a simple mapper, used in Destriper)
 - MADMapper (more complicated, but not better)

Two options:

(1) **No weighting**: Flux of a sky pixel is the **simple** average of all signal samplings (by all detectors) in the pixel:

$$f_{pixel} = \frac{\sum_{i}^{n} f_{i}}{n}$$
, $error_{pixel} = \sqrt{\frac{\sum_{i}^{n} (f_{i} - f_{pixel})^{2}}{n(n-1)}}$

(2) Inverse variance (of instrument noise) weighted: Flux of a sky pixel is the inverse variance weighted mean of all signal samplings in the pixel, the variance is calculated using the white noise of the detector with which a given sampling is taken:

$$f_{pixel} = \frac{\sum_{i}^{n} f_{i} / \sigma_{i}^{2}}{\sum_{i}^{n} 1 / \sigma_{i}^{2}} \quad error_{pixel} = \sqrt{\frac{\left|\sum_{i}^{n} (f_{i} - f_{pixel})^{2} / \sigma_{i}^{4}\right|}{\left(\sum_{i}^{n} 1 / \sigma_{i}^{2}\right)^{2} - \sum_{i}^{n} 1 / \sigma_{i}^{2}}}$$

SPIRE Naïve Mapper

esa Hifigee

Inisc

- A mapper originally developed for the CMB measurements (MAD: Microwave Anisotropy Dataset).
- The algorithm is FFT based.
- Strength: Minimize stripes due to uncorrelated detector drifts ("1/f noise").

Example (taken from an earlier talk of PACS team): Naïve map of a PACS observation

• Weakness: ringing effect (in the time domain) at any places the timelines have sharp changes (bright sources, edges of scans, etc.)

NHSC Data Processing Workshop – Pasadena 10th- 14th Sep 2012 SPIRE Photometer : Comparison between MADMapper & NaïveMapper

MADMapper: FFT based, minimize uncorrelated 1/f noise

mapPlw=madScanMapper(level1, array="PLW")

NaïveMapper: simple average

esa Mifiecc

mapPlw=naiveScanMapper(level1, array="PLW")

Diff. map:

 MADMap does not improve over the simple naïve map: weak uncorr. 1/f in SPIRE!!

 stripes: offsets of individual detector channels on the order of ~ 0.1Jy/beam. (mainly caused by errors of Temperature Drift Correction). example: PSW map without baseline removal

you see nothing but stripes

- 3 Baseline Removers:
 - Median baseline remover.
 - Polynomial baseline remover.
 - Destriper (pipeline default).

\varTheta								
File Edit Run Pipelines Scripts Window Tools H						Hel	p	
F٩	æ		SPIRE	Useful s	scripts 🕨	2	Photometer Astrometry Correction	5
_						3	Photometer Baseline Removal and Destriper	
Z Editor ×						2	Photometer Map Merging	
🥏 Photometertriper.py 🗙						2	Photometer Solar System Object Motion Correction	
	1 🕨 🧳	#				2	Spectrometer Array Footprint Plot	F
:	2 ,	# This file	is part	of He	rschel	2	Spectrometer Background Subtraction	
	3	# Copyright #	2001-20	ll Her:	schel .	2	Spectrometer Line Fitting	
	5	₩ HCSS is fr	ee soft	ware:]	you cai	2	Spectrometer Thumbnail Mosaic Plot	
	6 🖌	<i># it under t</i>	he term	s of ti	he GNU	20	sser General Tabile Dicense as	
	7 🧳	# published	published by the Free Software				oundation, either version 3 of	
	8 🧯	# the License, or (at your optio				on)	any later version.	
	9 🧯	#		-	-		-	
1	0 ,	# HCSS is di	stribut	ed in a	the hop	pe	that it will be useful,	

Module name: baselineRemovalMedian

- 1. Subtract the median scan-by-scan and detector-by-detector (default).
- 2. Subtract the median of each timeline detector-by-detector.

- Strength: simple (you know what you are doing).
- Weakness:
 - residual drifts (as shown in the illustration);
 - over subtraction when there is extended emission.

Module name: baselineRemovalPolynomial

1.Subtract a polynomial baseline scan-by-scan and detector-by-detector. 2.Subtract a polynomial baseline of each timeline detector-by-detector.

- Strength: more flexible than median removal (often means less residual drifts).
- Weakness (compare to median removal):
 - more severe over-subtraction when the polynomial order is high.

ROI: Region Of Interest

ROI (available for both median & polynomial baseline removers): Excluding bright regions from baseline estimate to minimize the over-subtraction.

• Destriper (pipeline default)

- Minimize map stripes by adjusting the baseline subtraction (median or polynomial) iteratively using the naïve mapper.
- Strength:
 - make better maps in general (no significant over-subtraction);
 - the only SPIRE baseline remover in HIPE for structured emission regions;
 - can do the 2nd order deglitching (HIPE 9.1).
- Weakness:
 - longer computation time, higher demand on RAM.

- Map Merging: Make maps using timelines of more than 1 observations (particularly useful for parallel mode observations with cross-scans).
- Solar System Object Motion Correction: Correct the proper motion of solar system objects (causing blurred images) before the mapmaking.

Summary

- As default, the pipeline makes map using the destriper, which minimizes the stripes due to baseline-offsets iteratively.
- In the reprocessing, if the map does not have much structure, one can opt to use naivemapper + baseline remover (median of polynomial, with or without ROI masking) to save time and RAM.
- We do not recommend to use MADMapper for SPIRE photometer maps.

