

SPIRE Overview

Bernhard Schulz, Nanyao Lu, Kevin Xu, Dave Shupe, Lijun Zhang, Arnie Schwartz

NASA Herschel Science Center

Dust in our own Galaxy

- PACS and SPIRE parallel mode observation of the galactic plane
- Two colors from two PACS bands and one color from three SPIRE bands.

SPIRE

SPIRE ICC

esa Mifigice Obse

esa

Hificc

nhsc

NHSC Open Time Cycle 2 Observation Planning Workshop 22th July 2011 – Bernhard Schulz

SPIRE

The SPIRE Instrument

Imaging Photometer

Simultaneous observation in 3 bands 139, 88, and 43 pixels Wavelengths: 250, 350, 500 μ m $\lambda/\Delta\lambda \sim 3$ FOV 4' x 8', beams 18.1", 25.2", 36.6"

Imaging Fourier Transform Spectrometer

Simultaneous imaging observation of the whole spectral band 37 and 19 pixels Wavelength Range: 194-313, 303-671 µm Resolution: 0.04, 0.24, 0.83 cm⁻¹ Circular FOV 2.0' diameter, beams 17-21", 29-42"

SPIRE in the Herschel Focal Plane

Components of the BDA

Most signal drifts come from temperature changes, as shown by the perfect correlation of thermistor pixel T1 and detector signals. The resistor pixel R1 does not vary with temperature.

Signal is very stable after correction with thermistor signals (1/f knee < 10mHz).

Bolometer Detector Array (BDA)

Beam Steering Mechanism

Includes also PCAL calibration source that illuminates all detectors simultaneously.

- Point source photometery
 - 7 point jiggle, chop/nod
- Spectrometer mapping - No chop/nod

Photometer

SPIRE

page 11

Photometer Sensitivities

Wavelengths (µm)	250	350	500
Point Source (mJy, 7-point mode, one repeat ABBA)	7.0	7.0	7.0
Small and Large Map (mJy, 1σ, one repeat A+B scan, nominal speed)	9.0	7.5	10.8
Extragalactic confusion noise (mJy 1σ)	5.8	6.3	6.8

HSpot provides more specific values depending on parameter selection

Photometer Flux Calibration

- SPIRE uses Neptune as primary flux calibration standard for the photometer.
- Neptune model estimated absolute accuracy = ± 5% (correlated over the SPIRE range – i.e., whole spectrum moves up or down)
- SPIRE measurements are reproducible to better than 2%.
- The current overall absolute calibration accuracy is ± 7%.
- This calibration with consistent linearization and array flatfields became available with HIPE V5. The newest released version of the data reduction software is HIPE V7.
- See SPIRE Observers' Manual for further details

Beam Profiles

Band (μm)	Major Axis FWHM (arcsec)	Minor Axis FWHM (arcsec)	Mean Ellipticity (%)		
250	18.3	17.0	8.1		
350	24.7	23.2	6.6		
500	37.0	33.4	10.9		

- Very close to Gaussian
- Modeled and empirical beam profiles available

Far Field Beam PSW OD136

Simulated sky map over ~66degx66deg around boresight (log scale) of hot spots/stray paths

Amplitude: ~0.74 (+/-10%) Extent, as fitted FWHM of the long dimension distribution: ~34.9arcmin (+/-10%)

Width: ~6.5arcmin (+/-10%)

- Hot Spot "I" verified with Jupiter in all 3 SPIRE wavelengths and by PACS with 2x2deg map in parallel mode.
- PACS found attenuation 5*10⁻⁴
- Good and Bad news: Measurement consistent with telescope model
- Low probability for Moon to enter, but observers should be wary of other bright sources close to telescope hot spots.

The Confusion Challenge

D. Elbaz

Photometer AOT

Mifico

The SPIRE Photometer in HSpot

000	0	SPIRE P	hotometer									
	inus AOB Labab	CPhate 0000				000		SPIRE Tir	me Estimation S	Summary		
UN	ique AOR Label:	SPhoto-0000				Band	Point Source	Point source	1-σ	Extended Sou	Extended Sou	Extended Sou
						(µm)	Flux	S/N	instrument n	Surface	S/N	1-σ
		Target: Arp220	Type: Fixed Single				(mlv)		(mjy in beam)	(Mly/sr)		(Mlv/sr)
	Po	osition: 15h34m5	7.12s,+23d30m11.5s			250	(1197)		9.0	(10) (1)		0.8
	New T	Target Modify	Target) Target List)		350			7.5			0.3
				/		500			10.8			0.2
	Nu	umber of visible stars f	or the target:None Specified		O	14						
					Sensitiv	/11/						
					Conside	, icy			_			
		Instrume	nt Settings			On-sou	arce integration	time per map r	epetition (s)	051		
Repetition	าร	Source	type			Numbe	r of man renetiti	0.05	-			
						Humbe	r or map repetiti	0113		•		
		0 10			IVIODE	Total o	n-source integra	ation time (s)	3	3051 (=1*3051)	
		O Sn				Instrum	ant and observ	ation overhead	(c) (c)	15.1		
		• La	rge Map			instrum	ient and observ	ation overneau	3 (3)	,51		
	Repetition facto	or Source Flu	x Estimates and Bright Source	e Setting	T :	Observ	atory overhead	(s)	e	600		
		bounce in	(Course The Estimates)	ie setting	IIME	Total ti	ma (s)			602 (-3051+	951+600)	
R	tepetition 1		Source Flux Estimates			Totarti	ine (3)			1002 (= 5051+	551+000)	
-Large	Man Parameter					Note: to c	nange the obse	rvation time,	change the re	petition factor	on the AOR r	main screen.
Large	Map Farameter	15		B /	0.	It multiplies	the on-source	integration tin	ne per map re	petition to give	e the total or	-source time.
	Length	h (arcmin)	60.0	Ma	n Size							
	Height	t (arcmin)	60.0				Confu	sion nois	se estima	ation sur	nmary	
Scan Spee		when amound	Nominal				Note	: the predicte	d confusion n	oise level is hi	aher	
Couri Opoc	Select	, the speed	Inominai T				tha	n the estimate	ed 1–σ instrur	nent noise lev	el!	
	Scan D	Direction	Scan Angles A and B			Ra	nd	Est 1-m		Fst 1-m	F	t 1-σ
	Mapice	entre offset Y (arcmin)	0.000			(u	m)	Confusion No	ise Co	onfusion Noise	Confu	ision Noise
Offect	timp st				CONTUS	on		Level for	_	Level for	Leve	per Pixel
Ulisel	Map ce	entre offset Z (arcmin)	0.000		Comao			Point Source	s Ext	(Mly/sr)		(mJy)
	Orie	ntation			N I I	250	7.0	(1193)	1.1957	(0)}7377	6.4	
	0				Noise	350	8.2		0.6793		7.8	
	мар С	Orientation Al	ray with Sky Constraint			500	10.	1	0.4308		9.2	
Oriontation	Angle	e from (degrees) 0										
Unentation	Angle	e to (degrees) 360				_						
	Julgie					Ur	date Confusion	Noise Estimati	on Con	fusion Noise E	timator Messa	iges
										,		
6			Cancel	OK						(Details (ОК
(Cancer									

Parallel Mode SPIRE and PACS

- Scan maps at speeds of **20** and **60"/sec** with PACS and SPIRE active in parallel are useful for large-area surveys.
 - The distance between PACS and SPIRE apertures is 21 arcmin.
 - Two almost orthogonal (84.8°) directions for cross scanning are available.

Cesa Milline OSP PACS CSPIRE

SPIRE

esa Mifigice Obse

Spectrometer

Mach-Zehnder type design broad band intensity beam splitters (200-700mm) two input ports and two output ports no sensitivity to polarisation of incident radiation

FTS Scan Mechanism

- Double parallelogram carriage
 with toothless gear
- Moiré fringe position measurement system (0.1 mm accuracy)
- Continuous scan ability used
- Nominal speed: 0.5 mm s⁻¹
- Signal frequency range 3 10 Hz
- 3.8-cm travel

SPIRE

eesa

nisc

HIFICC

SMEC Scans & Spectral Map Coverage

Spectral Resolution

Spectrometer Sensitivities

HR , ∆σ=0.04 cm ⁻¹		MR , ∆σ=	0.24 cm ⁻¹	LR , ∆σ=0.83 cm ⁻¹		
Band	Wn [cm ⁻¹]	λ [μm]	∆F,5σ;1h [10 ⁻⁷ W m ⁻²] HR	∆F,5σ;1h [Jy] HR	∆F,5σ;1h [Jy] MR	∆F,5σ;1h [Jy] LR
	51.5	194	2.15	1.79	0.28	0.083
SSW	46.7	214	1.56	1.30	0.22	0.063
	35.5	282	1.56	1.30	0.22	0.063
	32.0	313	2.04	1.70	0.28	0.082
SLW	25.5	392	0.94	0.77	0.13	0.037
	14.9	671	2.94	2.20	0.37	0.106

- Sensitivities substantially better than pre-flight estimates.
- Sensitivities are limited by systematic noise associated with channel fringing and imperfect RSRF removal.
- Noise currently integrates down as N_{Reps}^{1/2} for at least ~4h (100 repeats back and forth).

Flux Density Calibration

- Primarily based on Uranus
 - 7% absolute accuracy based on consistency with Neptune model (achievable for >100Jy sources)
- Telescope/Instrument background subtraction
 - Dominant factor for continuum accuracy, especially at long wavelengths
 - More systematic uncertainty at long wavelength end
 - Continuum accuracies of ~1Jy are typical (SLW)
- Spectral Mapping
 - Additional 10-15% uncertainty from flatfield
- Telescope pointing accuracy
 - 6" deviation from point sources reduces flux by 20-30% for SSW

Beams

FTS Beams	Broad-band FWHM	Average		
SSW D4	19 ± 1"	17.4 ± 0.8		
SLW C3	35 ± 1.5"	33.9 ± 4.4		

- Multimoded feedhorns cause structured response function and beam profiles
- Extended sources will need special care in that respect

Spacecraft Y direction (arcsec)

The SPIRE Spectrometer in HSpot

