

Example Science Cases and AORs for SPIRE II. Spectrometer

Nanyao Lu (NHSC/IPAC)

Covered Topics

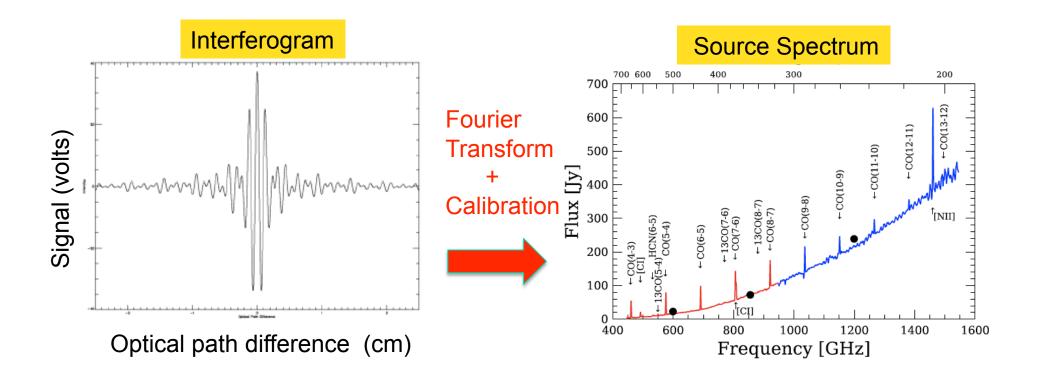
- Overview of the spectrometer and its observing modes.
- HSpot demo: a single-pointing observation of the galaxy M82.
- HSpot demo: a raster map observation of the extended galaxy M81.
- Some considerations for your observational planning.

SPIRE Spectrometer

Fourier Transform Spectrometer (FTS): The entire spectral coverage of 194-671 micron is observed in one go!

spectrometer mechanism (SMEC) Telescope input SSW Filter Beam Splitter Beam Splitter Filter **SCAL SLW** IR source to null telescope background (Not powered on; @4.5K)

page 3 Nanyao Lu



From Interferogram to Spectrum

Just One AOT! But a few Options

What spectral resolution do you need? (set the FTS scanning distance)

(0.83 cm⁻¹; 25 GHz)

What spatial sampling do you need? (set the number of BSM pointings)

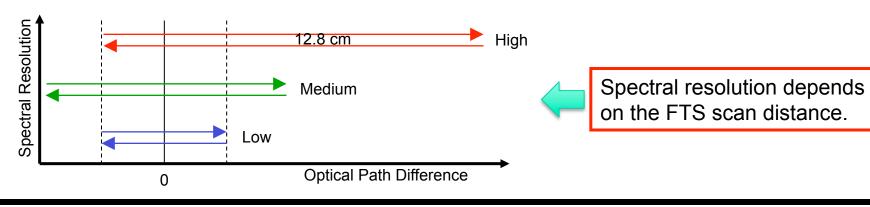
(2 beam spacing)

Intermediate (1 beam spacing)

- Full (1/2 beam, Nyquist)

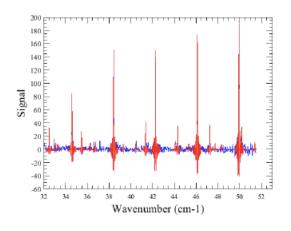
What is your source size? (set the number of telescope pointings) **Single point** (1 FOV of 2' in diameter)

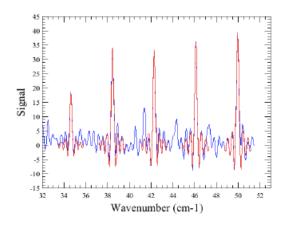
page 5 Nanyao Lu

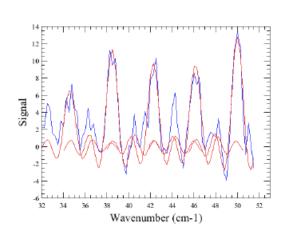


Spectral Resolutions

Mode	Δσ	R	Δν	What for?
High (HR)	0.04 cm ⁻¹ (1.2 GHz)	1290–370	230-800 km/s	Line spectroscopy; Line detection & fluxes;
Intermediate (IR)	0.24 cm ⁻¹ (7.2 GHz)	210–60	1410-4930 km/s	Line detection & fluxes; Excitation studies;
Low (LR)	0.83 cm ⁻¹ (25 GHz)	62–18	N/A	Continuum
High+Low	Both HR & LR scans in the same observation.			







Spectral Resolutions (Cont.)

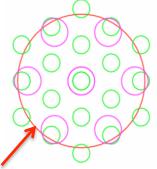
CO lines in the SSW band:

High: $\Delta \sigma = 0.04 \text{ cm}^{-1}$ (1.2 GHz) $230 - 800 \, \text{km/s}$

Medium: $\Lambda \sigma = 0.24 \text{ cm}^{-1}$ (7.2 GHz)

Low: $\Lambda \sigma = 0.83 \text{ cm}^{-1}$ (25 GHz)

Blue curve: observed spectrum; Red curves: SINC function fits to CO lines.

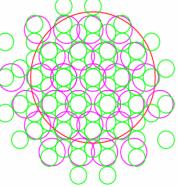


Spatial Sampling Options

Jiggling the beam-steering mirror (BSM) allows for 3 spatial sampling modes:

Sparse

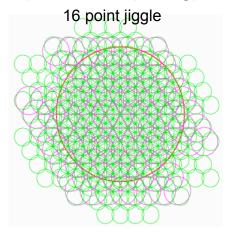
(2 beam spacing) no jiggling


Circle of 2' diameter

- For point source observations.
- Most economic.

Intermediate

(1 beam spacing)


4 point jiggle

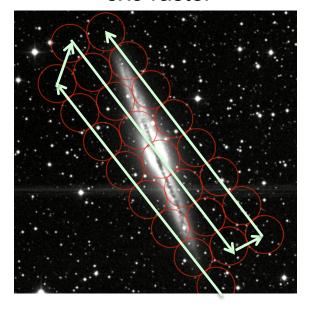
 Useful for larger maps by sacrificing some details.

Full

(half beam spacing)

- SSW **FWHM**
- **SLW FWHM**

- Detailed mapping of an area with Nyquist sampling.
- Time consuming though.



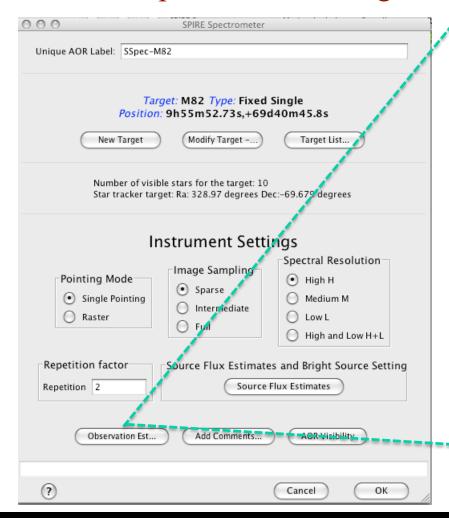
Raster Maps

- Raster map (< 30'x30') is made of MxN identical individual fields of view, each with a sparse, intermediate or full spatial sampling.
- Step = 116 arcsec along raster rows or 110 arcsec across rows.
- Raster direction is fixed to spacecraft axes. So check the entire visualization range for adequate sky coverage, or set a time constraint for the observation.
- If necessary, may consider breaking up a large map into smaller maps to save time.

8x3 raster

page 9 Nanyao Lu

NHSC Herschel OT2 Proposal Planning Workshop 22 July 2011

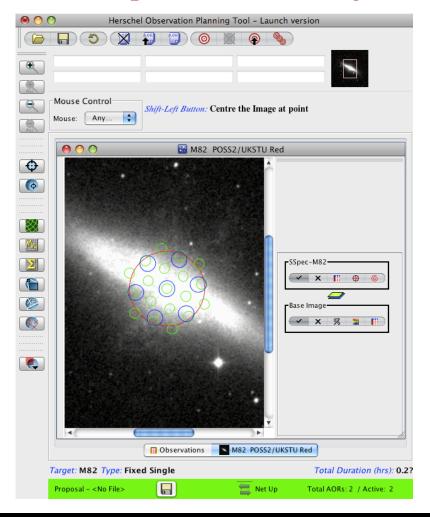


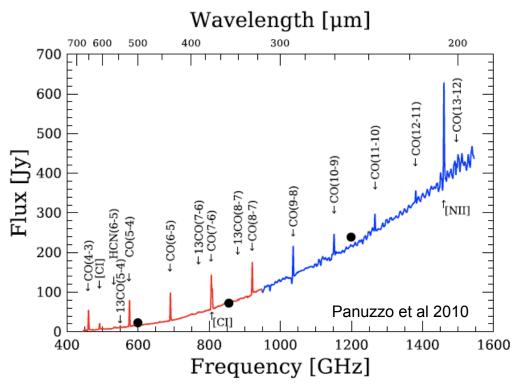
NASA Herschel Science Center

Hspot Demo: A Single Pointing Observation of M82

000	SPIRE Time Estin	nation Summary					
Wavelength (µm)	1-σ line flux sensitivity (10^-17 W/m^2)	1–σ continuum sensitivity (ly)	Unapodised resolving power (λ/Δλ)				
194	1.6	1.3	1,288.7				
200	1.5	1.2	1,250.0				
250	0.7	0.6	1,000.0				
300	1.1	1.0	833.3				
320	1.2	1.0	781.2				
400	1.0	0.8	625.0				
550	1.1	0.9	454.5				
672	1.6	1.4	372.0				
Number	of raster points of jiggle positions per raster poin rce time per FTS scan (s)	1 t 1 66.6					
Number	of FTS scans per jiggle position	4 (=2* repetition factor)					
Total on	-source integration time (s)	266 (= 1*1*66.6*4)					
Instrume	ent and observation overheads (s)	236					
Observa	Observatory overhead (s)						
Total tim	ne (s)	682 (= 266+236+180)					
Note: to change the observation time, change the repetition factor on the AOR main screen. This factor increases the number of scan pairs made per jiggle position, hence changes the total on-source integration time accordingly.							

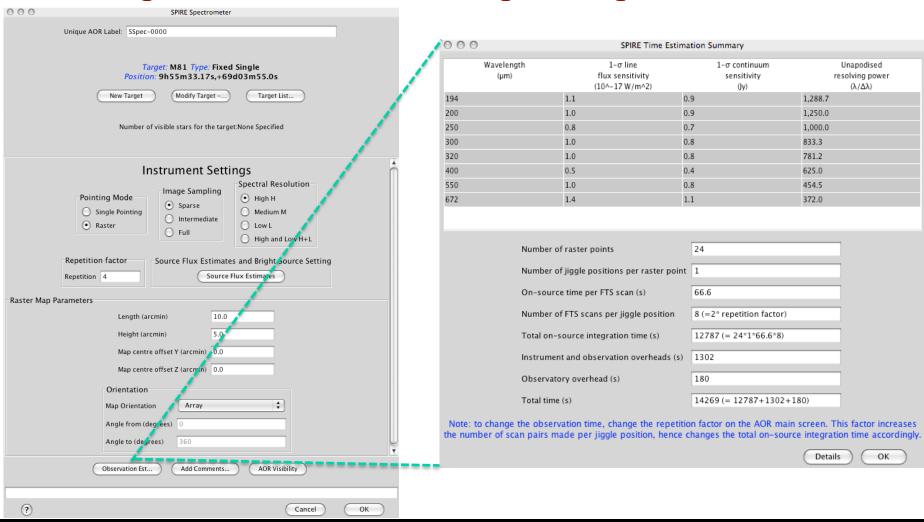
Detailed time line when clicked





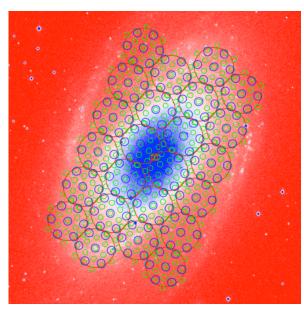
Hspot Demo: A Single Pointing Observation of M82 (Cont.)

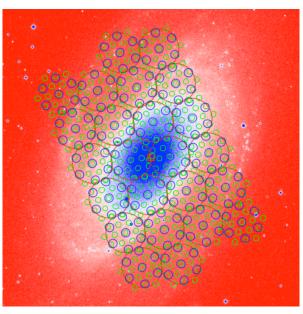
NHSC Herschel OT2 Proposal Planning Workshop 22 July 2011



NASA Herschel Science Center

Hspot Demo: A Raster Map Example on M81





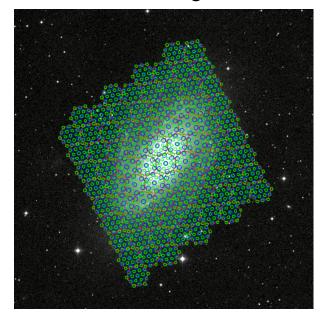
Hspot Demo: Raster Map Examples on M81

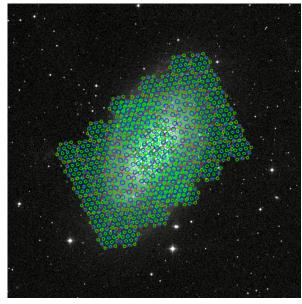
10'x5' (6x4) raster on 29 April 2012.

10'x5' (6x4) raster on 01 March 2012.

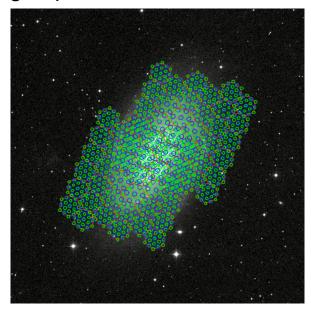
Check representative map orientations over all possible future visibilities! If necessary/possible, make your map larger (thus, more costly), impose time constraints (thus, reducing chance for scheduling) or break a large map into smaller maps.

page 13 Nanyao Lu





May Want to Break a Large Raster Map into Smaller Maps


All using 4 FTS scan repeats, sparse sampling, high spectral resolution

One 9x9 raster; Total time = 13.1 hrs

Two 6x6 rasters; Total time = 11.7 hr(on 01 Mar 2012)

Two 6x6 rasters; Total time = 11.7 hr(on 29 Apr 2012)

page 14 Nanyao Lu

Some Planning Considerations

- Good for line detection, but not ideal for resolving lines (e.g., suitable for gas excitation study).
- Very efficient for multiple line emission mapping (e.g., suitable for gas outflow or velocity field study).
- Telescope background (~ 500/1000 Jy in SSW/SLW) dominates. A
 photometer companion observation is highly recommended in cases
 of spectroscopy of a faint continuum (< a few Jy). Line spectroscopy
 is less affected by telescope background.
- On the other hand, if your target is (unfortunately) very bright (> 400/200 Jy for SSW/SLW; e.g., Galactic center), you may consider using the bright-source detector setting.

Some Planning Considerations (cont.)

- For point source observations, it is best to place the target on the central detectors, which are still best calibrated at this point.
- Line blending could be a problem in hot molecular cores even with the high resolution mode.
- Even a small raster observation using high spectral resolution and full spatial sampling could be quite costly.
- If you can, a higher scan repetition is always desirable for better deglitching using scan redundancy (e.g., a repetition of 4 is better than 2).
- A large map with time constraints may make your observation not schedulable at all. You may want to break it into smaller maps.

