

SPIRE Spectrometer Products and Data Processing Pipeline

Nanyao Lu NHSC/IPAC (on behalf of the SPIRE ICC, HSC & NHSC)

Outline

- Background
- Pipeline data products
 - What products are there?
 - Which ones are the most relevant to you?
- Pipeline calibrations
 - What are the standard calibration steps?
 - What calibration accurcies can you expect?

SPIRE Spectrometer

Fourier Transform Spectrometer (FTS): The entire spectral coverage of 194-671 micron is observed in one go!

nhsc

HIFICAC

esa

PACS

Probing Molecular, Atomic and Ionized Gases Mrk231

Fourier Transform: Interferogram to Spectrum

Real World: Finite Interferogram

Background Documents

- **The SPIRE Data Reduction Guide** (DRG; data structure, processing, reprocessing, many details and cookbooks)
- **The SPIRE Handbook** (instrument observing modes, calibration...)
- Swinyard et al. 2014, MNRAS, 440, 3658 FTS calibration
- Makiwa et al. 2013, Applied Optics, 52, 3864 FTS beams
- <u>Wu et al. 2013, A&A, 556, 116</u> Semi-extended sources
- ...
- Public wiki on SPIRE
 <u>http://herschel.esac.esa.int/twiki/bin/view/Public/SpireCalibrationWeb</u>

SPIRE Data Reduction Guide (DRG)

Pipeline Data Products

Observation Context

Page 11

HIFERCE ODSC

Spectrometer Level 2 (and Level 1)

Sparse observations contain spectra calibrated in **W/m2/Hz/sr** (extended) and in **Jy** (point source)

Mapping observations contain spectra and spectral cubes calibrated in **W/m2/Hz/sr** (extended):

Pipeline Calibrations

Spectrometer Detector Time Line

Hifizice

Pipeline Step 1: Modify Timelines

(cf. SPIRE DRG Sect. 7.3)

(cf. SPIRE DRG Sect. 7.3)

x = The difference between the 2 optical paths in the interferometer

esa

Pipeline Step 3: Modify Interferograms

(cf. SPIRE DRG Sect. 7.3)

Pipeline Step 4: Fourier Transform

Apply the Fourier Transform to each interferogram to create a set of spectra for each spectrometer detector. The spectra are in units of V/GHz, not yet flux calibrated.

(cf. SPIRE DRG Sect. 7.3)

What is in the Raw Spectrum?

Instrument Background Emission

At about 4-5K, instrument emission is only significant at the long wavelength end of SLW.

Instrument temperature varies with time:

Telescope Background Emission

Your observations are most likely dominated by the telescope emission!

PACS

Telescope Background Emission: A Typical Case

HIFICAC

Flux Calibration Scheme

Flux Density in Jy assumes point-like emission

$$f = C_{point} I$$

Point source conversion factor (= R_{tel}/R_{point})

RSRFs are empirically derived by observing a source with a known spectrum and dividing by a model:

R_{tel}: Dark Sky (= the telescope) **R**_{point}: Uranus

(See <u>Swinyard et al. 2014, MNRAS, 440, 3658</u>)

Pipeline Step 5: Modify Spectra

* Both unapodized and apodized spectra [using the default apodization func. NB(1.5)]

Pipeline Step 6: Create Level-2 Products

* Both unapodized and apodized data [using the default apodization func. NB(1.5)]

Hifi

esa

FTS beam profile

See Makiwa et al. 2013, Applied Optics, 52, 3864

Extended vs. Point Source Flux Calibration

Both true point-source and fully extended-source cases are accurately Calibrated in the pipeline, but not so for the cases in between!

nhsc

esa

Calibration Uncertainties (HIPE v11 onwards)

- Point sources observed on the centre detectors (SSWD4 and SLWC3):
 - Absolute uncertainty ±6%, with the following contributions:
 - i. Systematic uncertainty in Uranus model: ±3%
 - ii. Statistical repeatability (pointing corrected): ±1%
 - iii. Uncertainties in the instrument and telescope model additive continuum offset error of 0.4 Jy for SLW and 0.3 Jy for SSW
 - iv. The effect of the *Herschel* APE.

• Sparse observations of significantly extended sources:

- Absolute uncertainty **±7%**, with the following contributions:
 - i. Uncertainty comparing telescope and Uranus calibration: ±3%
 - ii. Systematic uncertainty in Uranus model: ±3%
 - iii. Systematic reproducibility of telescope model: 0.06%;
 - iv. Statistical repeatability estimated at ±1%
 - v. Additive continuum offset of $3.4x10^{-20}$ W/m²/Hz/sr for SLW and $1.1x10^{-19}$ W/m²/Hz/sr for SSW.
- Mapping mode:
 - Overall repeatability ±7%
- Wavelength calibration:
 - 5 7 km/s for line velocity.

esa

(See Swinyard et al. 2014, MNRAS, 440, 3658)

