Using the mid- and far- infrared to measure the thermal structure of M supergiants winds – where it matters

Graham M Harper CASA, CU Boulder, USA

Co-Investigators

Matthew Richter - UC Davis: EXES PI and TEXES Eamon O'Gorman – Dublin Institute for Advanced Studies, Ireland: Radio Curtis DeWitt – UC Davis: EXES Nils Ryde – Lund University, Sweden: Photospheric models Edward Guinan – Villanova University, PA: long-term photometry Tommy Greathouse – SWRI, TX: TEXES + EXES Instrument and Science Teams

Overview

- Motivation for study of mass loss
- Historical Overview Mid- Far-IR studies
- ➢ NASA-DLR SOFIA-EXES & NASA-TEXES
- What have we learned?
- Thoughts from the Wiggle-Room

Using the mid-IR to measure the thermal structure of M supergiant winds – where it matters

Betelgeuse

NACO/VLT – 2009 near-Infrared Credit: ESO and P. Kervella

Possible outflow drivers

- 1) Radiation pressure on dust/molecules
- 2) Magnetic fields/ waves
- 3) Episodic ejections of mass
- 4) Pulsations and shock waves

Type II core-collapse supernova

Cassiopeia A – Remnant (false color)

Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration. Acknowledgement: Robert A. Fesen (Dartmouth College, USA) and James Long (ESA/Hubble)

Where is the best place to probe the outflow?

Where to look? Energetics!

- Most of the energy that goes into the stellar outflow is used to lift the mass out of the gravitational potential
- KE of flow negligible fraction of energy budget < 5%
- Probe the region close to star – where the signatures of mass loss most apparent

Vitals – Betelgeuse (≈Antares)

Spectral Type	Red Supergiant M2 lab	
Surface Temperature	3600 K (cool star)	
Log(L/Lsol)	5.12	
Distance	197 +/- 45 parsec (pc) 640 Light Years	
Mass (Birth)	~20 M(sun)	
Mass (Now)	~18 M(sun)	
Mass Loss Rate	3x10 ⁻⁶ M(sun)/yr (current)	
Wind speed V_w	~10 kms ⁻¹ (current).~16 km s ⁻¹ (recent)	
Age	~10 Myr	
Time left?	~0.1 Myr (Nolan et al. 2015)	
Origin	O-type (hot) main-sequence Runaway Star	
Fate	Supernova Type II	

Thermal Pressure (Parker-type)

- ➤ T (solar) = 1-2 x 10⁶ K
- > T (α Ori) = 1-2 x 10³ K
- V_{esc}/a (solar) = 620/150 ~ 4
 V_{esc}/a (α Ori) = 75/6 ~ 13

$$\dot{M}_{\text{tot}} = 4\pi \rho_* a R_*^2 \left[\frac{v_{\text{esc}}(R_*)}{2a} \right]^4 \exp\left[-\frac{v_{\text{esc}}^2(R_*)}{2a^2} + \frac{3}{2} \right]$$

Exponential wins
 <u>Thermal Pressure don't work</u>

Radiation Pressure (IR+dust)

VLTI+VISIER Kervella et al. 2011 A&A 531, A117

- Dust images (VISIER) 6 filters
 ▶ 7.76-19.50 µm
- Agree with earlier IR interferometry
- Consistent with Oxygen-rich dust, silicates, alumina
- Bright (incomplete ring)
 - Radius ~0.9 arcsec

Most dust observed at 30R*
 No working models

Radial Pulsations?

- Early M Supergiants
 - Semi-regular variables
- \blacktriangleright $\Delta V = 6 \text{ km s}^{-1}$ (peak-to-peak)
- V_{esc}(R_{*}) = 75 kms⁻¹
- What is velocity of C-O-M?
- Cf Mira variables
- ΔV= 25 kms⁻¹ (peak-to-peak)
- V_{esc}(R_{*}) = 50 kms⁻¹
- Arroyo-Torres, B. et al. 2015
 A&A, 575, p. 50
- Radial pulsation models don't work

Were it not for magnetic fields, the Sun would be as uninteresting as most astronomers seem to think it is.." - R.B Leighton, 1969

Betelgeuse CSE Observational Timeline (Space Era)

Some Background: Shake-up of 1998

Prior to 1998 - consensus that outflow was T~8000 K and magnetically driven

- Theoretical model (HA84)
- Spatially unresolved radio observations
- Ultraviolet images and spectra from Hubble Space Telescope (+*IUE*)
- In 1996 spatially resolved cm-radio maps from the VLA showed the "average" temperature is T~1500-3500 K – much cooler than expected
 - Lim et al. 1998 Nature, 392, 575
 - O'Gorman et al 2015, A&A, 580, A101
 - > No velocity information from radio

Rodgers & Glassgold 1991- CSE Thermal Model

 Semi-theoretic model
 1991 ApJ 382, 606
 Balance between line and adiabatic cooling and dust-drag heating The radial temperature structure can be compactly described by

$$\frac{d\ln T}{d\ln r} = -\frac{4}{3} \left(1 + \frac{1}{2} \frac{d\ln v}{d\ln r} \right) + \sum_{i} \mathcal{H} - \sum_{j} \mathcal{C} \quad \lambda = \mathcal{H}, C$$

(Goldreich & Scoville 1976 ApJ 205, 114) where \mathcal{H} and \mathcal{L} are the heating and cooling rates for different processes, *i* and *j*, per unit mass, multiplied by the local dynamical time-scale (r/v) and divided by the thermal energy.

Ground term fine-structure cooling lines

Transition upper-lower	Wavelength (µm)	Техс (К)
[O I] 1 – 0	145	98
[O I] 2 – 1	63	228
[C II] 1/2 - 3/2	157	91
[C I] 1 – 0	610	24
[Si II] 1/2 – 3/2	34.8	413
[S I] 1 - 0	56.6	254
[S I] 2 - 1	25.2	571
[Fe II] 7/2 – 9/2	25.99	550
[Fe II] 5/2 – 7/2	35.3	960

Notes:

Oxygen-rich atmospheres Low FIP elements photoionized by stellar UV field Molecules 10x under abundant in CSE (not fully associated)

Haas & Glassgold 1995

Figure 2. The [O I] $63 \,\mu\text{m}$ line in α Sco on 93 May 23.

- Kuiper Airborne Observatory
- ➢ 0.91 m
- Cryogenic Grating Spectrometer (CGS)
- R~3,000 Erickson et al. 1995

FIG. 1.—(a) The [O 1] 63 μ m spectrum of α Ori with a superposed least-squares fit. (b) The atmospheric correction determined by ratioing 63.2 and 62.7 μ m spectra of the Kleinmann-Low nebula. The dashed region is an interpolation across the strong [O 1] line present in KL.

Fig. 2.—The [Si II] 35 μm spectrum of α Ori with a superposed least-squares fit.

Infrared Space Observatory

- Left: Justtanont et al. 1999 A&A 345, 605
 - SWS Grating R=250, 1000
 - Strong [Fe II] emission
- Right: Barlow 1999 2 days before end of ISO mission
 - Background and continuum subtracted
 - CO significant emission (is it a coolant?)

Using Fe II (Fe⁺) as a Temperature Probe

- Constrain temperature using iron atoms with one electron stripped off: Fe II
- 2) Dominant ionization state
- 3) Multiple transitions from same ion

A_{ii} =
$$10^{-2} \text{ s}^{-1}$$

2)
$$C_{ii} = nH \times 10^{-9} s^{-1} cm^{+3}$$

- nH > 10⁹ cm⁻³
 Metastable levels (Boltzmann Dist.)
- 4) Use EXES to dial-up which transitions to observe
 - 1) 22.902 μm (T_{exc}=11,700 K)
 - 2) 25.988 μm (T_{exc}= 540 K)
- 5) Use TEXES

1) 17.937 μm (T_{exc}=3,400 K)

SOFIA-EXES as a thermometer

- Echelon-Cross-Echelle Spectrograph (EXES)
 - PI-class Instrument Matt Richter, UC Davis
 - Compact design based on Michelson 1898
 Echelon small enough to fit on SOFIA
 - high spectral resolution 6 kms⁻¹
 - Wavelength range: 4.5 28.3 μm
- Cycle 2 Project: Dial-up selected spectral features sensitive to different temperatures
 - Optimum features are in mid-infrared (water vapor clobbers the stellar signal)
 - Use SOFIA flying at 12.8 km (42,000 ft)
 - Use Doppler effect to measure flow velocities and locate where in outflow you the temperature is measured

NASA IRTF with TEXES (PI J Lacy)

Profiles: close to Gaussian (near rest): formed in low velocity, turbulent gas – similar properties in small M supergiant sample:

SOFIA-EXES [Fe II] 25.99 µm emission

 \geq

- T_{exc}=540 K
 - Flux consistent with ISO SWS spectra
 - Key result ~5 kms⁻¹ centroid blue-shift
 - Larger than 1 kms⁻¹ Doppler shift expected

Blue-shift requires atmosphere close to the star to be even cooler than suggested by VLA data ...

IRTF-TEXES [Fe II] 17.94 µm profile

➤ T_{exc}=3,400 K

- Observed with TEXES on NASA's Infrared Telescope Facility
 - 2014 Feb 23 and Oct 22
 - 3m telescope optimised for IR
 - Mauna Kea 4200 m (14,000 ft)
 - R=50,000 (FWHM 6 kms⁻¹)
- The line profiles are similar to those observed 10 years ago very Gaussian
- Red-shift is at limit of wavelength error budget and may be real
 - Note it is opposite sense to 25.99μm

SOFIA-EXES [Fe II] 22.09 µm profiles

- ➤ T_{exc}=11,700 K
- Not detected on Betelgeuse or Antares
- Flux upper-limit 4x less than predicted from VLA constrained temperature model
- Flux limit consistent with the extra cooling required to produce the 25.99 μm blue-shift

Summary of EXES/TEXES study

- Observed [Fe II] 25.99 µm profile shows wind acceleration – modeling shows the flow is even cooler than expected (e.g., lower blue curve)
- Non-detection 22.290 µm consistent with cooler envelope
- 17.98 μm profiles similar to 10 yrs ago
- Previous theoretical cooling curves may be reconciled if they include
 - [Fe II] cooling observed!
 - Complete adiabatic cooling

Wiggle Room

Some ideas – Final Slide

- Radio cm-continuum measures "brightness temperature" averaged over the beam
 - But atmosphere is a mix of hot and cold gas, what are we measuring?
- Radiation pressure effective on dust+molecules close in
 - but then they are destroyed but why do we see distant rings?
 - Is dust just a tracer of episodic events
- Can we trust pulsation in models, if models don't resemble know variability?
- Is the balance between magnetic pressure and heating different in weakly ionized plasmas (V. Airapetian, in progress) less heating required?
- Geometry magnetic flux tube divergence leads to additional cooling close to star
- Is the heating and cooling description complete enough?
 - For some reason Fe has been neglected, is that because it is too complicated P. Woitke ?