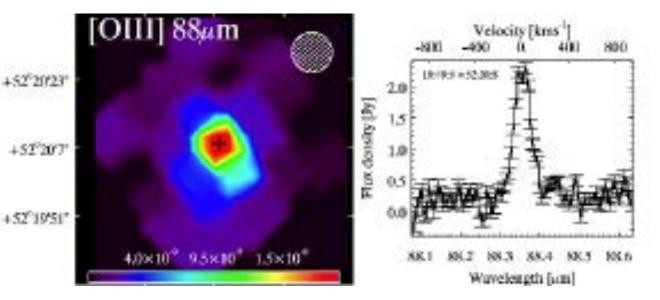
Preparing a FIFI-LS Observation

Robert Minchin

FIFI-LS Instrument Scientist

Flux Estimates

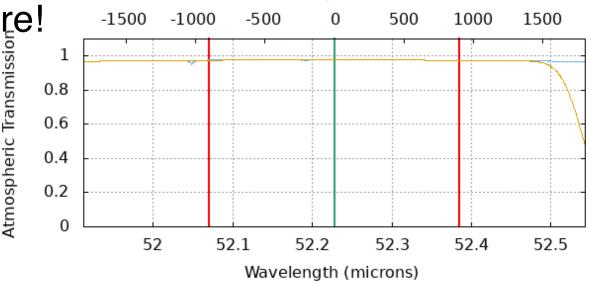

- Your proposal must include an explanation of how you estimated the expected flux
- If we want to look at the [OIII] 52µm flux, for example, we could use pre-existing [OIII] 88µm flux measurements from SOFIA or Herschel observations. If those aren't available, we could use FIR continuum measurements or some other measure.
- We will take an example from the *Herschel* Dwarf Galaxy Survey – Mrk 153

Flux Estimates: Mrk 153

- Cormier et al. (2015) measured an [OIII] 88 μ m flux of 98.90 ± 3.80 × 10⁻¹⁸ W m⁻² over a 3 × 3 spaxel area
- We take this as a lower bound on the total flux at 52μ m
- This is clearly a compact object, so we can calculate the flux expected within the central spaxel from the total flux
- At 52 μ m this should be 55%
- This gives a flux in the central spaxel of 5.44×10^{-17} W m⁻²

Mrk 153 from Cormier et al. 2015

Time Estimates

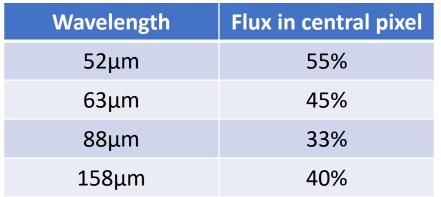

- We can now take this value and enter it into SITE
- The other number we need is the redshift of the galaxy, which NED tells us is 2389 km s⁻¹
- We will calculate the time estimate to reach an SNR of 5 at the default altitude of 41,000 ft and the default elevation of 40°

Time Estimates

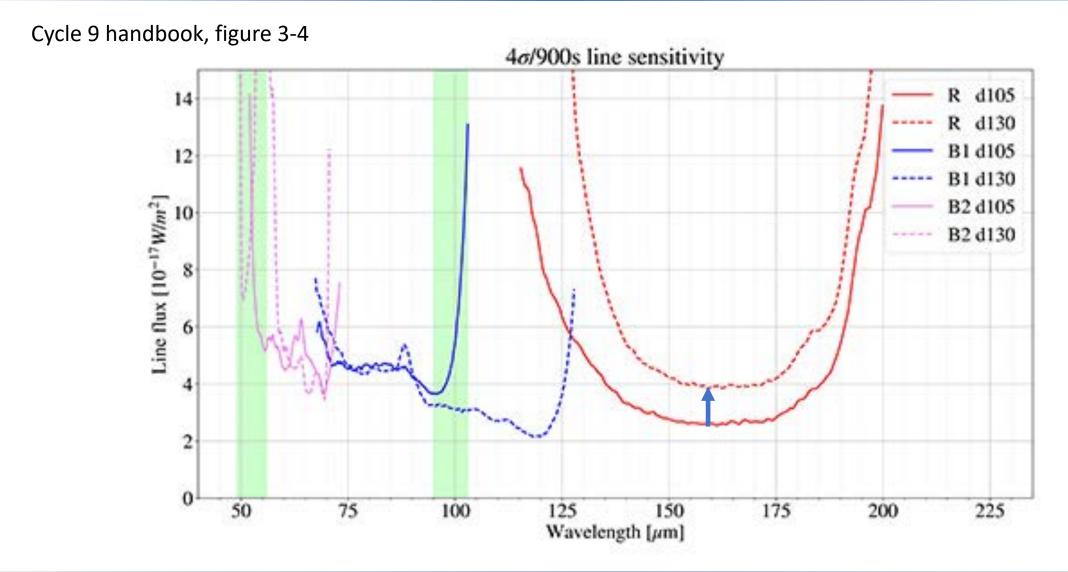
- We can now take this value and enter it into SITE
- The other number we need is the redshift of the galaxy, which NED tells us is 2389 km s⁻¹
- We will calculate the time estimate to reach an SNR of 5 at the default altitude of 41,000 ft and the default elevation of 40°
- What a beautiful atmosphere!
- We will need 36 minutes on-source to reach 5σ
- We now go to USPOT

USPOT

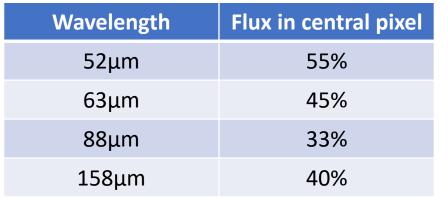
- For the proposal we only need to fill in the items with red stars; the other items can be left until Phase II
- Each cycle of a symmetric-chop observations gives 30s of onsource time
 - To reach 36 minutes, we therefore need 72 cycles
 - This gives a total time of 5,772s = 1.6 hours
- Observing modes: Symmetric, Asymmetric or Total Power
 - We want Symmetric (the default), which means we observe the target in both nod positions.
 - We will check that our chop positions are clear of the galaxy in the visualization


- The [CII] flux, from *Herschel*, is 53.10 \pm 1.43 \times 10⁻¹⁸ W m⁻²
- Assuming it is compact, we expect 40% of this flux in the central spaxel
- This gives 2.124 \times 10⁻¹⁷ W m⁻²
- Going back to SITE...

Wavelength	Flux in central pixel
52µm	55%
63µm	45%
88µm	33%
158µm	40%



- The [CII] flux, from *Herschel*, is 53.10 \pm 1.43 \times 10⁻¹⁸ W m⁻²
- Assuming it is compact, we expect 40% of this flux in the central spaxel
- This gives $2.124 \times 10^{-17} \text{ W m}^{-2}$
- Going back to SITE we find that we expect a 4σ detection
- But there's another catch for observations at 52μ m we will use the D130 dichroic for the best sensitivity, but this decreases our sensitivity at 158μ m.



- The [CII] flux, from *Herschel*, is 53.10 \pm 1.43 \times 10⁻¹⁸ W m⁻²
- Assuming it is compact, we expect 40% of this flux in the central spaxel
- This gives $2.124 \times 10^{-17} \text{ W m}^{-2}$
- Going back to SITE we find that we expect a 4σ detection
- But there's another catch for observations at 52μ m we will use the D130 dichroic for the best sensitivity, but this decreases our sensitivity at 158μ m
- So we probably only expect a ~2.5σ detection of [CII] in the central pixel

Thank you

- Any questions?
- If you think of questions later, please email the SOFIA helpdesk: sofia_help@sofia.usra.edu

FIFI-LS data on M51 (Pineda et al. 2018) in SOSPEX Image c/o D. Fadda

