

Welcome to the FIFI-LS Data Workshop

21.10.2016 Green Building, ARC

Motivation & Goals

- Get data published
- Feedback for debugging & upgrading the pipeline
- Improve your future proposals

Today

- Presentations
 - Discussions
 - Tutorial
- Before we start ...

Bundesministeriun für Wirtschaft und Energie

Logistics

- Lunch break
- Coffee Break
 - Dinner?
 - WebEx
 - Participants
 - Wifi & Links

Bundesministerium für Wirtschaft und Energie

Agenda

10:30	10 Welcome and Objectives	Alfred
10:40	15+5 FIFI-LS Overview and Latest News	Alfred
11:00	25+5 Science with FIFI-LS	Randolf
11:30	30+15 Observing Modes and How to Use Them	Christian
12:15	10+5 Options for Improvement of FIFI-LS	Sebastian
12:30	60 Lunch (Mega Bites)	
13:30	45+15 FIFI-LS Data Products	Dario
14:30	30+15 Evaluating the Data with Fluxer	Christof
15:15	15 Break	
15:30	75 Interactive Data Session (yours or example data	a set) All
16:45	15 Summary	Alfred/Randolf
17:00	Adjourn	

DLR

Bundesministerium für Wirtschaft und Energie

FIFI-LS

An Instrument for SOFIA

Ames 21.10.2016

FIFI-LS

The active FIFI-LS Team

Simon Beckmann	IRS	Electronics	ST
Aaron Bryant	IRS	Astronomy, Scripts	ST
Sebastian Colditz	IRS	Improvements, Operations	Ames
Christian Fischer	IRS	Project Engineer, Timing	AFRC
(Norbert Geis)	MPE	Optics & Mechanics,	M
Thomas Henning	MPIA	Astronomy, \rightarrow Hendrik Linz	HD
Rainer Hönle	IRS	Detector Module	M
Christof Iserlohe	IRS	Data Pipeline, Fluxer, Science	С
Randolf Klein	USRA	Instrument Sciencentist,	Ames
Alfred Krabbe	IRS	Strategy, Science	ST
Leslie Looney	UIUC	Science	III
Albrecht Poglitsch	MPE	Science, Consultant	Μ
Felix Rebell	IRS	Cryomechanics & Test	ST
Bill Vacca	USRA	Pipeline, Science	Ames
Chris Trinh	USRA	Operations	AFRC

FIEL

Bundesministerium für Wirtschaft und Energie

FIFI-LS

- Two Light Paths: 51 120 µm and for 110 200 µm, simultaneous observations
- Simultaneous Spatial Imaging: 30" x 30" and 60" x 60" FOV, for each light path respectively.
- Each field of view resolved with 5 x 5 pixels.
- Spectral Resolution: R ~800-2000 in each band (velocity resolution of 150-300 km/s).
- 16 pixels of spectral resolution: Required to resolve spectral features in, e.g., galaxies.
- Instantaneous Spectral Coverage: of 1500 km/s covers, e.g. the velocity distribution in entire galaxies and provide good baseline coverage on both sides of any spectral line in both bands.
- **3-D Imaging Capability**: Simultaneous imaging in both spatial and the spectral domains for all 400 pixels in each band.
- 2 Ge:Ga Photoconductor Arrays: 25x16 pixels each, unstressed & stressed.
- Littrow-Mount Grating Spectrographs: One for each spectrometer, compact design, operating in 1st or 1st/2nd order (for the long and short wavelength bands respectively).

FIFI-LS versus PACS Spectrometer/Herschel

FIFI-LS

2 gratings blue & red channel independent 5x5 pixel FOV 6"x6" & 12"x12"pixel 2 channel 16x25 detectors 50 – 205 µm shortest observation ~5 sec mapping speed high Multiple settings per target upgradable

PACS

1 grating blue & red channel coupled 5x5 pixel FOV 9.4"x9.4" pixel 2 channel 16x25 detectors 50 – 200 μm shortest observation ~7 min mapping speed low one or few settings per target history

Due to the faster mapping speed and shorter integration times, FIFI-LS is expected to be only 3-5 times less sensitive (and not 8 times) compared with PACS on extended targets.

Context of SOFIA Science Instruments

Ames 21.10.2016

12

Bundesministerium für Wirtschaft und Energie

FIFI-LS

15

Bundesministerium für Wirtschaft und Energie

FIFI-LS

Hand crafting the detectors: 800 individual pixel

Ames 21.10.2016

The parallactic angle changes with time

Image Derotator

The FIFI-LS Derotator keeps the orientation of the FOV during observations

Image Derotator

With the FIFI-LS Derotator the FOV can be oriented according to the science requirements

Spectral Resolution

Prediction vs. lab results using water emission lines

FIFI-LS Sensitivity

Measured and Predicted Sensitivity Estimates

Ames 21.10.2016

FIFI-LS Performance Kosi IRS

- Background is typically at least 100 times more than signal
- Limits bias voltage especially close to atmospheric features
- Noise suppression is key to good data reduction

für Wirtschaf

und Energie

Comparison of Flux between FIFI-LS and PACS at [CII]

- Fitted line flux of [CII] at 157.741 μm
- Black cross marks center of the galaxy at 9h55m52.2s 69d40m46.6s
- Maximum flux levels match almost perfectly
- Total fluxes in yellow circle are within 15 %
- Flux is shown in W/m² per PACS 9.4"x9.4" spaxel
- General topology matches well

Pipeline

IDL version of pipeline built on earlier code written by R. Klein and K. Nishikida

Current version incorporates many of the algorithms in the raw data LabView reduction code written by R. Hönle

Works within existing DPS infrastructure (REDUX)

More: See talk by Dario

Mosaiking for Beginners I

1x2x5x5pixel, 60"x60"FOV Center 1 ov-area = 1 single FOV Offsets ["]: -15/+15 +15/-15 +15/+15 -15/-15 90" 90"

1x overlay is useless, need at least 2x

Mosaiking for Beginners II

Mosaiking for Beginners III

 $(54^{\circ}/30^{\circ})^2$ = 3.24 \rightarrow More than triple the area with 4 overlays

FIFI-LS GC

FIFI-LS Mosaic

Bundesministerium für Wirtschaft und Energie

Thank You !

