Carbon stars and dust production as a function of metallicity

G.C. Sloan and many others

SOFIA Tele-Talk 2-26-2014

NGC 1978 in the LMC – observed by the HST

Conclusions

The amount of dust produced by carbon stars does *not* depend on metallicity (down to [Fe/H] ~ −1)

- Carbon stars should contribute dust at z > 6
- Exceeding a free carbon limit triggers a superwind and truncates AGB lifetimes
- Caution with dust budgets: Estimated dust production rates depend on assumed opacities

More conclusions

- Spectra and photometry support evidence for temporal variations in dust production
- SiC dust shows layering in grains, depending on Z
- We can measure the distances to Galactic carbon stars with a new J-K color-mag rel'n

Stellar evolution

Vassiliadis & Wood (1993)

Intermediate-mass stars

 Zero-Age Main Sequence Core H burning
 Red Giant Branch Shell H burning
 Horizontal Branch Core He burning
 Asymptotic Giant Branch Shell He/H burning

Evolved stars in M5

AGB stars are ... big

Scale: Boxes are 2

AU on a side

Final vs. initial mass

- Final mass = mass of white dwarf
- Sun-like stars lose ~1/2 their mass
- Massive AGB stars lose ~85% of their mass
- Most mass ejected on AGB

Vassiliadis & Wood (1993)

The AGB

From John Lattanzio's website

- Inner He burning shell
- **3-***α* **sequence** (Salpeter 1952)
- He burns in thermal pulses, leads to dredge-ups

Thermal pulses & dredge-ups

- Convective envelope overlaps convection around He fusion zone
- C dredged up to surface

Busso et al. (1995)

Long-period variables

The LPV P-L relation(s)

Circumstellar dust chemistry

CO paradigm

- CO will form until C or O exhausted
- C/O < 1 M giant
 - OH, H₂O, MgO, SiO, other oxides
- C/O > 1 Carbon star

– C₂H₂, HCN, hydrocarbons, carbides, sulfides

AGB dust composition

Amorphous silicates

Alumina, crystalline tracers

C-rich dust

Amorphous carbon SiC and MgS tracers

CO paradigm \rightarrow dust dichotomy C/O depends on dredge-ups Low-mass AGB: ~0-2 M Insufficient dredge-ups **O-rich dust** Intermediate-mass AGB: ~2-5 M **C-rich dust** High-mass AGB: ~5-8 M Hot-bottom burning (CNO cycle) **O-rich dust** Supergiants: >~8 M **O-rich dust**

Dust sources in the Galaxy

Dust traces the total input to the ISM

Source	% of dus
O-rich AGB	67
C-rich AGB	20
Red supergiants	8
Supernovae	4
Wolf-Rayet stars	0.5
Planetary nebulae	0.2
Novae	0.1

(Gehrz 1989, IAU Symp. 135, 445)

The AGB dominates dust production locally

The Milky Way System

ISO and the first IRS samples

Galaxy D = ? <[Fe/H]> ~ 0

50 kpc ~ -0.3

60 kpc ~ −0.7

The Small and Large Megellanic Clouds - John Drummond

Samples and metallicities

Estimating metallicity

Fornax – Most targets are younger than ~3 Gyr
 – Metallicities most like SMC and LMC
 Sculptor – Both targets are < 2 Gyr old – [Fe/H] ~ –1.0

A carbon star

Local Group spectra

- For DK 52 2.6 mJy For DK 52 - 2.6 mJy For DK 52 - 2.6 mJy For DI 2 - 1.5 mJy For BW 69 - 3.2 mJy For BW 83 - 3.7 mJy 6 8 10 12 14 a faint!
- These targets are faint!
- Need **Cornell's** optimal extraction algorithm (*Lebouteiller et al. 2010*)
- Extracted spectra publicly available: http://cassis.astro.cornell.edu

Manchester Method

Introduced by Sloan et al. (2006) and Zijlstra et al. (2006)

Applied to large comparison samples from the Galaxy, LMC, and SMC

Total warm amorphous carbon content

Measured by the [6.4] – [9.3] color

Need outflow velocity, gas-to-dust ratio to get mass-loss rate

Calibrated with radiative transfer models (Groenewegen et al. 2007)

Gaseous acetylene absorption strength at 7.5 μ m

SiC dust emission strength at 11.3 μm

Total mass-loss rates

In more detail:

$$\log \dot{M}\left(\frac{\mathrm{M}_{\odot}}{\mathrm{yr}}\right) = \left[-8.9 + 1.6\left(6.4\right] - \left[9.3\right]\right)\log\left(\psi\frac{\nu_{\mathrm{out}}}{10\,\mathrm{km/s}}\right)$$

Multiply by outflow velocity of dust to get dust-production rate Multiply by gas-to-dust ratio (ψ) to get total mass-loss rate

Carbon-rich dust content

Dust content increases with pulsation period

Metallicity has little obvious influence

Pulsation periods from the SAAO Fornax: Whitelock et al. (2009) Sculptor: Menzies et al. (2011) Leo I: Menzies et al. (2010) Their work is the key to making these comparisons possible

A closer look

We may be seeing a decrease in dust content at the lowest metallicities

Sculptor and Leo I are below the fitted line, at a 3.6σ level

(The Fornax data are consistent with our assumed metallicity)

AGB dust vs. Z

• More carbon stars as metallicity drops

Z	0.02	0.008	0.004	0.0001
	(Solar)	(LMC)	(SMC)	
Lower limit (M _o)	1.7-2.0	~1.5	1.2-1.4	~1.1
Upper limit (M _o)	5	4	4	3

Voli & Renzini (1981, A&A, 94, 175)

Karakas & Lattanzio (2007, PASA, 24,103)

• Metal-poor galaxies \rightarrow more carbon, less silicates

Dust sources in the Mag. Clouds

Galaxy	Total dust production rate (M, /yr)	Class	LMC	SMC
		x-AGB	61%	66%
		C-AGB	6	13
LMC	11 x 10 ⁻⁶	O-AGB	7	8
SMC 9 x 10 ⁻⁷	9 x 10 ⁻⁷	RSG	2	3
		other	24	10

Boyer et al. (2012)

- x-AGB = extreme AGB = (mostly) embedded carbon stars
- other = YSOs and other far-IR sources = no dust *production*

Carbon stars produce most of the dust in the LMC and SMC

Timing

T (Myr)	Z	Event
0	infinity	Big Bang
0.4	1050	Recombination & Dark Ages
480	10	Pop III & reionization
		(Greif et al. 2008)
870	6.42	J1148+5251

Vassiliadis and Wood (1993)

- Model lifetimes decrease as Z drops
- Time to thermally pulsing AGB at Z=0.004 (SMC)
 - 3 M_☉ → ~ 390 Myr
 - -4 M_☉ → ~ 180 Myr
- Z=10⁻⁵, lifetimes even shorter

We have ~400 Myr to get from Pop III to J1148+5251

AGB making carbon-rich dust in J1148+5251

C/O and metallicity

$$\frac{C_{free}}{O} = \frac{C}{O} - 1$$
 After formation of CO molecules

$$\frac{C}{O} = \frac{C_i + \delta C}{O}$$

- Assume C_i scales with Z
- Assume δC independent of Z
- $O = O_i$ does depend on Z

[O/Fe] = -0.25 [Fe/H] for -1.5 < [Fe/H] < 0.0

& BARBUY

Melendez & Barbuy (2002, Fig. 5)

Expected free carbon

$$\frac{C}{O} = \left(\frac{C}{O}\right)_{\odot} \left(10^{0.25 \left[Fe/H\right]} + \delta C \, 10^{-0.75 \left[Fe/H\right]}\right)$$

$$\frac{C_{free}}{C_{\odot}} = \left(\frac{C}{O} - 1\right) 1.85 \times 10^{0.75 \, [Fe/H]}$$

Take (C/O) $_{\odot}$ = 0.54 and δC = 0.56 O $_{\odot}$

Galaxy	[Fe/H]	C/O	$C_{\it free}/C_{\odot}$
Milky Way	0.0	1.1	0.19
LMC	-0.3	1.4	0.44
SMC	-0.7	2.2	0.68
Sculptor	-1.0	3.5	0.81

Four times more free carbon in Sculptor than the Milky Way?

It's not in the dust! And it's not in the C₂H₂

Impact on enrichment

The mass-loss history and lifetime on the AGB will determine what a star can produce and inject back into the ISM

This will impact the enrichment history of a galaxy

Graphite vs. amorphous carbon

Draine & Lee (1984)

The standard reference But how graphitic is circumstellar dust?

Rouleau & Martin (1991)

Astronomical amorphous carbon

Zubko et al. (1996)

ACAR – lab data We suspect it is more crystalline (graphitic)

Variations in opacity

- For a given amount of dust emission, higher opacity requires less dust
- Dust opacity increases for
 - More crystallinity (graphite vs. amorphous carbon)
 - Non-spherical grain shapes
 - Aggregate grains, which will be more porous
 - For graphite, *larger* grains

Testing the opacities

Groenewegen et al. (2007, 2009)

 Models use dust from Rouleau & Martin (1991)

Srinivasan et al. (2009, 2010)

- GRAMS model grid
- These use ACAR dust (Zubko et al. 1996)

DPRs from GRAMS models will be smaller

Groenewegen & Sloan (2014, in prep.) Assumed g-to-d ratio = 200, v_{out} =10 km/s

Manchester Method

Total warm amorphous carbon content

Measured by the [6.4] – [9.3] color

Need outflow velocity, gas-to-dust ratio to get mass-loss rate

Calibrated with models by Groenewegen et al. (2007)

Gaseous acetylene absorption strength at 7.5 µm

SiC dust emission strength at 11.3 μ m

The "metallicity" plot

- Left: Comparing Milky Way, LMC, and SMC
 - shows regions populated by different metallicities
- Right: Just the Milky Way
 - shows regions populated by different variability types
- SRbs show the same mean galactic scale height as Miras

SiC in carbon stars

- Left: Two sequences observed (Sloan et al. 2014c, in prep.)
- Right: May be tracks I and II from Leisenring et al. (2008)
 I metal-poor amorphous carbon condenses first
 II metal-rich SiC condenses first
- Coating by am C and MgS reduces strength of SiC maybe

Coatings, SiC, and MgS

26-30 µm feature from MgS (Goebel & Moseley 1985; Hony et al. 2001)

- Strength of feature in some post-AGB objects and PNe violates abundance limits (Zhang et al. 2009)
- Lombaert et al. (2012) MgS coatings solve the problem

Magellanic PNe can show strong SiC-like emission (Bernard-Salas 2006)

- The "Big 11 feature" is indeed SiC (Sloan et al. 2014a, submitted)
- SiC coatings solve the abundance difficulties for metal-poor stars

Infrared color-color space

- Left: MSX SMC sample, with IRS sources color-coded
- Right: Galactic sample, color-coded by [6.4]–[9.3] color
- J–K and [8]–[24] measure dust at different temperatures

Distances for the SWS sample

- Carbon stars have a well-defined color-mag relation at J–K
 - Calibrated for Galaxy using SAAO mean magnitudes (Whitelock et al. 2006; Menzies et al. 2006)
 - and the SAAO P-L relation and bolometric correction
- J–K distances allow us to compare the P-L relation among galaxies

Spectral samples and bias

van Loon et al. (2008)

- 3-µm spectra of Magellanic carbon stars
- In their sample, SMC showed less dust than LMC

But comparing periods shows why (Sloan et al. 2014c, in prep.)

- Unbiased spectroscopic samples are rare
- Our Spitzer samples also suffer from this

Biases in the Galactic sample

Galactic metal-rich control sample:

- IRAS/LRS 538 spectra classed 4n (LRS Atlas 1986)
 - matched 96 matched with GCVS (Sloan et al. 1998)
- ISO/SWS 42 in control sample
 (Leisenring et al. 2008; Sloan et al. 2014b, in prep.)
- Compared to LMC, the Galactic sample selects against
 - Long pulsation periods
 - Dust-embedded sources
 - Overtone pulsators
- Our Cycle 1 SOFIA/FORCAST grism program was designed to rectify this

Between canceled flights and the shutdown, we only got 3 of 40 objects – with no carryover to Cycle 2

FORCAST/Grism spectra

- These data are preliminary, especially G3
- Ozone is always a challenge
- With a better calibration, we can
 - Measure [6.4] [9.3]
 - Model and estimate the acetylene absorption at 7.5 μm
 - Measure the SiC strength and profile
- We just need a sample!