

Very Large Organic Molecules in Astrophysical Sources: C₆₀, PAHs and Nanodiamonds

Peter Sarre

Alessandra Candian, Markus Hammonds, Tom Kerr, Kyle Roberts, Keith Smith

The University of Nottingham, UK

Two ?related problems

Diffuse Interstellar Bands – unidentified

Absorption (common) Emission (rare)

Infrared Bands: C₆₀, PAHs, Nanodiamonds

Emission ('common') Absorption (rare or non-existent)

Are these problems important?

New forms of matter/dust in ISM Spectroscopic tracer of dust Organic molecules – implications for origin of life H₂ formation on grains Star and planet formation and evolution External galaxies and early astrochemistry

Diffuse Band Problem

Mary Lea Heger at Lick Observatory (1919)

Paul W Merrill (1935)

'Recent observations at Mount Wilson have disclosed four detached lines whose approximate wave-lengths are 5780.4, 5796.9, 6283.9, and 6613.9 Å; and another one, a vague feature near ¥4427, is suspected.

The chemical identification of these lines has not yet been made.'

George H. Herbig (1975)

Astrophysical Journal, vol. 196, Feb. 15, 1975, pt. 1, p. 129-160.

George H. Herbig (1995)

Extinction curve for HD 183143 with diffuse bands shown

Annual Review of Astronomy and Astrophysics, 33, 1995, pp. 19-74.

Infrared Bands due to large carbon molecules

- Emission features
- Common features UIR bands
- Usually attributed to polycyclic aromatic hydrocarbons (PAHs)

Tielens A.G.G.M., Ann. Rev. Astron. Astrophys, **46**, 289, 2008

Infrared Space Observatory (ISO) spectrum + ESO images

UIR bands

HST image 2004, NASA, ESA & H. Van Winckel and M. Cohen

Typical spectrum

Red Rectangle

Star

- Central star A0, Fe poor
- Binary period 318 ± 3 days
- Bipolar outflow from binary system

Nebula and disk

- Nebula (C-rich)
- Circumbinary disk (O-rich)

IR spectral Features

- Unidentified infrared emission (UIR) PAHs
- Silicate emission (disk)

HST optical image 2004, NASA, ESA & H. Van Winckel and M. Cohen

Spectroscopy: 3.3 µm feature (C—H stretch)

On-star Good Lorentzian fit

2" offset

3.3 µm band C-H stretch - two-

<u>components</u>

3.30 μm and 3.28 μm Δ ~ 0.02 μm

Small PAHs – a few rings

N-S cut: 3.3 µm band (total) and its two components

NIST Chemistry database

3.30 µm ..nonbay (on star) *e.g.* pyrene

3.28 µm ..bay (grows off-star)

NIST Chemistry database

NIST Chemistry database

500 K

- C₆₀ molecule discovered in 1985 (Kroto et al.)
- Macroscopic quantities 1990 (Krätschmer et al.)
- Infrared spectrum 4 bands ~ 7.0, 8.5, 17.4, 18.9 μm
- Two bands in NGC 7023 noted in Werner et al. (2004); discussed in detail in 2007 (Sellgren et al.)
- 2010
 - Sellgren et al. report 3rd band confirmation (also in NGC 2023)
 - Cami et al. report C_{60} and C_{70} in young planetary nebula Tc 1

• Tc 1 Spitzer data

Cami et al., Science (2010)

- C₆₀ also discovered in.....
- PNe in Milky Way and Magellanic Clouds (Garcia-Hernandez et al. 2010, 2011)
- One (possibly two) RCB stars (Garcia-Hernandez et al. 2011)
- PPN (Zhang & Kwok 2011)
- 'Veil' region of Orion Nebula (Rubin et al. 2011)
- Several post-AGB objects (Gielen et al. 2011)
- Binary XX Oph (Evans et al. 2011)

Standard star

 Our work.. YSOs, Herbig Ae/Be star and an unusual post-AGB star

C60 objects with Spitzer programmes

Table 1. Coordinates and photometry for the targets with C_{60} emission bands. Right ascension, declination, and near-infrared magnitudes are taken from the 2MASS catalogue (Skrutskie et al. 2006); mid-infrared magnitudes (where available) are from the *Spitzer* IRAC survey of the Galactic centre (Ramírez et al. 2008). *Spitzer* programme numbers and Principal Investigator (PI) names are are given for the IRS observations used in this study.

Name	RA	Dec	J	K	[3.6]	[4.5]	[5.8]	[8.0]	Programme (PI)
Embedded YSOs: ISOGAL-P J174639.6-284126 SSTGC 372630 2MASS J06314796+0419381	17:46:39.60 17:44:42.76 06:31:47.96	-28:41:27.0 -29:23:16.2 +04:19:38.2	> 13.8 > 16.0 14.01	12.95 12.87 10.67	10.28 10.31	8.83 8.82 -	7.38 7.67 -	5.58 6.48 -	40230 (Ramírez) 40230 (Ramírez) 50146 (Keane)
Other targets: HD 97300 (Herbig Ae/Be star) HD 52961 (post-AGB object) HR 4049 (post-AGB object)	11:09:50.03 10:18:07.52 07:03:39.63	-76:36:47.7 -28:29:30.7 +10:46:13.1	$7.64 \\ 16.06 \\ 6.32$	7.15 15.42 5.53	- - -	- - -	- - -	- - -	2 (Houck) 3274 (Van Winckel) 93 (Cruikshank)

• YSO in Central Molecular Zone in Galactic Centre

- PAHs
- Ne II, S III
- C_{60} at 18.9 and 17.4 μ m
- C₆₀ at 7.0 µm (Ar II)

• YSO in Central Molecular Zone

SEDs of YSOs and post-AGB objects (a) ISOGAL

- YSO in Central Molecular Zone
- Silicate and CO₂ ice absorption bands

YSO in Central Molecular Zone Nebula

Candidate YSO in Rosette

C₆₀ - excitation mechanism

• Thermal

 $N_u \propto g_u exp(-E_u/kT)$

Table 3. Observed vibrational band intensity ratios, inferred vibrational temperatures for YSOs and comparison with predicted photoexcited band ratios of Sellgren et al. (2010). $T_{\rm vib}^{\rm C}/K$ and $T_{\rm vib}^{\rm I-G}/K$ are the vibrational temperatures derived from the C₆₀ band strengths used by Cami et al. (2010) and obtained by Iglesias-Groth, Cataldo & Manchado (2011), respectively.

Object†	$I_{7.04}/I_{18.9}$	$I_{17.4}/I_{18.9}$	$T_{\rm vib}^{\rm C}/K$	$T_{\rm vib}^{\rm I-G}/K$
ISOGAL-P J174639.6-284126 (CMZ) SSTGC 372630 (CMZ) 2MASS J06314796+0419381	$ \begin{array}{c} \sim 0.42^a \\ \leqslant 0.70^b \\ 0.29 \end{array} $	$0.53 \\ \sim 0.59^b \\ 0.48^c$	$ \substack{\leqslant 450^a \\ \leqslant 540^b \\ 410 } $	$ \substack{\leqslant 500^a \\ \leqslant 620^b \\ 450 } $

C₆₀ – excitation mechanism

Photo (UV) excitation

As invoked for PAH IR emission

Table 3. Observed vibrational band intensity ratios, inferred vibrational temperatures for YSOs and comparison with predicted photoexcited band ratios of Sellgren et al. (2010). $T_{\rm vib}^{\rm C}/K$ and $T_{\rm vib}^{\rm I-G}/K$ are the vibrational temperatures derived from the C₆₀ band strengths used by Cami et al. (2010) and obtained by Iglesias-Groth, Cataldo & Manchado (2011), respectively.

Object†	$I_{7.04}/I_{18.9}$	$I_{17.4}/I_{18.9}$	$T_{\rm vib}^{\rm C}/K$	$T_{\rm vib}^{\rm I-G}/K$
ISOGAL-P J174639.6-284126 (CMZ) SSTGC 372630 (CMZ) 2MASS J06314796+0419381	$\begin{array}{c} \sim 0.42^a \\ \leqslant 0.70^b \\ 0.29 \end{array}$	$0.53 \ \sim 0.59^b \ 0.48^c$	$ \substack{\leqslant 450^a \\ \leqslant 540^b \\ 410 } $	$ \leq 500^a \\ \leq 620^b \\ 450 $
Photon energy/ eV				
5 10 15	0.46-0.58 0.76-0.94 0.97-1.20	0.28-0.38 0.28-0.38 0.29-0.38		

 a Value when 60% contribution to 7.0 μm feature from [Ar II] is removed (see text).

 b Silicate and ice absorptions affect continuum level definition.

 c Ratio when contribution of 20% from PAH feature at 17.4 μm is removed.

C₆₀ - pre-main-sequence star

- Herbig Ae/Be star HD 97300
- **PAHs** + C_{60}
- Very cool C₆₀ (from weakness of 7.0 μm band)

C₆₀ in unusual post-AGB stars

- Mixed chemistry post-AGB stars
- These two stars show IR emission from nanodiamonds very rare
- ? C₆₀ and nanodiamond formation linked
- Carbon onion pressure cell proposal (Goto et al. 2009)

C₆₀ formation

- Uncertain
- Micelotta et al. (2010) shock-induced formation from PAHs
- Chuvilin et al. (2010) TEM experiments
 - Dehydrogenation of a PAH/graphene
 - Formation of a 5-membered ring
 - Curvature to form C₆₀

SOFIA

- Multi-filter imaging of post-AGB objects
- AFGL 2688 the Egg Nebula
- Edge-on circumstellar disk
- Complex bipolar outflow
- Crystalline silicates, PAH features, and acetylene

EGG NEBULA [CRL2688, 2MASS J21021878+3641412] 315.578251 +36.694782 (2000), FOV=25.6", R:G:B = F814W:comb:F606W ACS/HRC, credit PI:SAHAI GO9463 NASA/ESA/STScI, Hubble Archives

SOFIA Observations

- PAH and silicates elongated
- PAHs and silicates chemistry linked?

PAH formation

Collaboration with Cheung et al. at Hong Kong University

Mass spectrometry results

Future – SOFIA

- Spectroscopy!
- Thanks

Standard star