SOFIA follow-ups of ATLASGAL massive clumps

Friedrich Wyrowski, Rolf Güsten, Karl Menten, Helmut Wiesemeyer & Silvia Leurini

MPIfR Bonn

Massive clump evolution Infall is a fundamental process in SF!

Outline

- The ATLASGAL survey
- Molecular line follow-ups
- How to probe infall
- Previous ammonia results

- New ammonia observations
- The extended sample
- Comparing ammonia with other high density probes
- New modeling of profiles
- APEX-SOFIA synergies

Overview of the ATLASGAL Survey Submillimetre Emission: Structure of the Dust

- APEX 870 µm continuum survey of the inner Galactic plane (300° < I < 60°, |b| < 1.5°)
- APEX: 12-m Single-dish Submillimetre Telescope located on the Chajnantor Plateau
- LABOCA: Large APEX BOlometer CAmera (MPIfR)
- 295 elements at 870 µm
- FoV = 11', an angular resolution of ~19" and sensitivity of ~60 mJy/beam

Complementary to Herschel/HiGAL & Pathfinder to ALMA MSF science

Galactocentric Distance (kpc)

Overview of the ATLASGAL Survey Submillimetre Emission: Structure of the Dust

Molecular line follow ups

- Dust continuum is important but molecular line information is indispensable !
- Effelsberg/Parkes NH₃ (Wienen+'12, '15):
 - Kinematic distances, temperatures

- IRAM 30m/ATNF-Mopra/APEX (Wyrowski/Csengeri):
 - 3 & 0.85mm line surveys: Physical & chemical conditions (CO, Giannetti+2014)
- Herschel/HIFI: 100 ATLASGAL sources currently observed in water lines → ATLASGAL water legacy (Wyrowski+; IRAS17233: Leurini+2014)
- MALT90 (Jackson+2013): Mopra Galactic Plane Survey of high density regions. large program:

- \rightarrow about 2000 ATLASGAL clumps mapped at 3mm

 SEDIGSM (Schuller+): APEX ¹³CO(2-1) survey of southern Galactic[®] Plane

ATLASGAL @ SOFIA

concerted effort on several fronts

- Massive clumps selected in several GMCs (e.g. Wienen+2015)
- Observe multiple sources without changing flight directions
- Multi-semester project
- → statistical significant sample covering range of evolutionary stages

- Cooling budget: OI/CII (e.g. Leurini talk)
- High-J CO: (11-10)/(16-15)
- Ammonia infall study

Wienen+2015: HI+870mu+¹³CO

Search for infall

I: Blue-skewed profiles

Needs excitation gradient, right tau

II: red-shifted absorption

Needs high critical density, central continuum

The story so far: Ammonia@1.8THz Wyrowski+2012

- 3 absorption line detections in science verification
- All redshifted with respect to v_sys

Table 2. Line parameters from Gaussian fits to the NH_3 lines. Nominal fit errors are given in brackets. In addition, the velocity of $C^{17}O(3-2)$ lines observed with the APEX telescope are given.

Source	T_{peak}	ΔV	VNH3 LSR	V ^{C¹⁷0}
	(K)	(km s ⁻¹)	$(\rm km \ s^{-1})$	(km s ⁻¹)
W43-MM1	-0.96 (0.22)	5.3 (0.8)	99.7 (0.4)	97.65 (0.06)
G31.41+0.31	-1.18 (0.29)	3.7 (0.8)	99.4 (0.4)	97.02 (0.04)
G34.26+0.15	-3.38(0.56)	5.5 (0.6)	61.2 (0.3)	58.12 (0.03)
			$\overline{\ }$	

Fig. 2. NH_3 spectra of the observed sources. Results of Paussian fits o the line are overlaid in green. The systemic velocities of the sources, letermined using $C^{17}O$ (3–2) are shown with dotted lines.

G34: comparison to VLA absorption

Fig. 3. G34.26+0.15 SOFIA NH_3 spectrum compared with the VLA NH_3 (2,2) spectrum taken from Gómez et al. (2000) which was integrated over the region which shows absorption. A two-component hyperfine fit to the (2,2) spectrum is shown in green.

Infall Results

- 3 clear detections of Ammonia line-of-sight infall consistent with results from cm-absorption and/or blue-skewed emission profiles
- More direct probe of infall that can be extended to earlier stages of SF without cm background continuum and cases where other species are depleted
- Infall rates of 3-10 x 10⁻³ M₂/yr (if spherical)
- Next step: extend to more sources and stages, in particular earlier ones

SOFIA Observations

- GT and cycle 1 science flights
- GREAT:
 - L1, various lines
 - NH₃ 3₂₊-2₂₋ 1810.379 GHz LSB
 - AFFTS/XFFTS:1.5/2.5 GHz
 - Chopped observations of 9 sources

Cycle I: a) continuation to Infrared dark clouds

Figure 2: IRDC G23.21-0.38: (a) ATLASGAL 870 μ m dust continuum as contours on GLIMPSE 8 μ m MIR emission in color, SOFIA beam in red. (b) APEX HNC (4–3) spectrum of this4clump with systemic velocity indicated.

Cycle I: b) filling in further stages:

- G35.20-0.74: submm brightest, northern massive young stellar object, fulfilling Lumsden+ MSX color criteria
- G327.3/G351.58: hot cores/ultracompact HII regions with high luminosity (up to 2x10⁵ L₀)

New SOFIA results: sample

New SOFIA results: continuum

Fig. 2. Comparison of GREAT continuum levels with PACS 160 μ m flux densities with nominal 20% errors.

Fig. 3. Example of constraining the radial physical structure with the help of the ATLASGAL submm dust continuum radial profiles.

New SOFIA results: lines

Wyrowski et al.: Infall through the evolution of high-mass star forming clumps

Fig. 1. NH₃ $3_{2+} - 2_{2-}$ spectra of the observed sources. Results of Gaussian fits to the line are overlaid in green. The systemic velocities sources, determined using C¹⁷O (3–2), are shown with dotted lines.

- 5 new redshifted absorption with shifts of 0.2 1.6 km/s with respect to $C^{17}O$
- 1 source dominated by outflow (G5.89), several blue wings
- 2 sources with blue shifted absorption

Complementary ground based data

How consistent are different probes ?

			1-0			4	-3	7-6 нс		
		nh3	hco+	hnc	CS	hnc	hcn	hco+	cs	
G327.2	29-0.58	0	0	0		0	0	0	+	
G351.5	58-0.35	++	++	++		o/r.a	. o/r	a o/ra	a -	ł
G23.2	1-0.38	++				++	0	++	0	
G34.4	l irdc43	++			0	0	0	+	0	
G35.19	9-0.74	+	++	0		0		++	0	1
g31.4	1	++			++	++	++	++	0	
g34.20	5	++	r.a.	r.a	++	++	++	++	+	ł
w43mm	1/930.82	++	+	++		++	++	++	0	

 \rightarrow Ammonia and HCO⁺ (4-3) show best correspondence

Modeling

- Fit dust continuum (ATLASGAL) with density power law (n~r^{α} α =1.5 2.2)
- Temperature structure dictated by inner heating source (luminosities known from SED fits, König+2015)
- → Adjust ammonia abundance and velocity structure in spherical RATRAN models
- Modelling of new sources results in infall with fractions of free-fall of 5 25 %. The ammonia abundance are in the range of $0.2 2 \times 10^{-8}$.
- But how consistent are models of NH_3 and HCO^+ ?

New SOFIA modeling Outflow component

HCO⁺ usually probing additional outflow component → RATRAN modification of Mottram+2013

Additional parameter:

- outflow widths/strength
- HCO⁺ abundance 22

New SOFIA modeling Outflow component

But many cases do not work with this simple geometry. Complicated outflows? Additional low density outer layer (Lopez-Sepulcre+2010)?

Hajigholi+2015

- Different excitation traces different v
- SOFIA opportunities:
 - GS 572 GHz @ 90% transmission
 - 1214 GHz (201-100, 211-110) @ 65%
 - 2355 GHz (4-3 lines) @ 63%

APEX-SOFIA synergies

- Mid vs. High J CO
- Blue-skewed self-absorbed high density probes vs. red-shifted absorption studies
- CO/CI cooling vs. CII/OI
- Complex molecules vs. hydrides
- Similar beamsizes in APEX submm windows and with SOFIA THz RX
- Imaging: CHAMP+/LASMA vs. UPGREAT

Summary & Outlook

- Infall on clump scales ubiquitous through wide range of evolutionary stages
- Ammonia and HCO⁺ (4-3) show best correspondence but HCO⁺ stronger affected by outflows
- Continue filling in stages (populating the M-L diagram)
- Study infall across clumps (upGREAT)
- Add additional lines to cover larger excitation range (new single pixel RXs)