SOFIA observations of far-infrared hydroxyl emission toward classical ultracompact HII/OH maser regions

T. Csengeri, K. Menten, M. A. Requena-Torres, F. Wyrowski, R. Güsten, H. Wiesemeyer, H.-W. Hübers, P. Hartogh, and K. Jacobs

Max Planck Institute for Radioastronomy, Bonn

SOFIA Community Tele-Talk April 30, 2014

SOFIA Early Science, Csengeri et al. (2012) A&A 542, L8

Outline

- Why to care about OH emission?
 - One of the first molecules detected in the radio: OH
 - The OH molecule can constrain the H₂O chemistry
- Rotational lines of OH: in the far-IR compared to Herschel/HIFI, SOFIA/ GREAT reaches higher frequencies with good spectral resolution: *unexplored territory*
- OH observations in SOFIA Early Science
- Models: envelope models (RATRAN), OH radio lines (Cesaroni & Walmsley 1991 model)
- Conclusion of the Early Science project
- Outlook: OH observations from Cycle I

Radio lines of OH

- OH: first interstellar molecule detected at radio wavelengths (Weinreb et al. 1963)
- "18 cm radio lines" of OH identified (Weinreb et al. 1965)
- radio interferometry:
 - origin: maser spots (0."05)
- Hyperfine structure (HFS) transitions from higher rotational levels have also been detected (4 to 23 GHz)

Radio lines of OH: anomalous HFS ratio

- Radio HFS lines of OH are not in LTE
 - anomalous HFS ratio
 - emission and absorption
 - stimulated emission (masers)
- Very high critical density (n>10⁸ cm⁻³)
- Transitions between the HFS levels are sensitive to the far-IR radiation field, and the density
 - sensitive tracers of the physical conditions
- Excitation mechanism not well understood

Timea **CSENGERI**

Excitation conditions of OH

- Two ladders: different mechanisms are important for masing
 - ► 2П_{1/2} ladder: collision
 - ► 2П_{3/2} ladder: radiation
- maser emission in 2Π_{3/2} ladder: radiative excitation + collisional de-exctation
- far-IR line overlap + radiative pumping: 2
 - problematic to models
- Cesaroni & Walmsley (1991): OH models revisited
- ultimately N(OH) and X(OH) is constrained

OH is chemically related to water

- The hydroxyl radical (OH) is closely linked to H₂O
- formation and destruction: $OH+H_2 \Leftrightarrow H_2O+H$
- byproduct of the H₂O photodissociation process in the presence of UV photons.
- OH can constrain the water chemistry
- important cooling line of the ISM (among [O I], $[C II], CO, H_2O)$
- constrain the cooling budget of shocks

Ion-molecule

O

OH

0

02

OH

н,

Chemistry

H2

Density

Max Planck Institute for Radioastronomy

High-T **Chemistry**

OH

Observations of the rotational lines of OH

- First observations of the far-IR OH lines: KAO and ISO
- Herschel/PACS
- But...OH is detected in various environments: maser spots, envelopes, shocks
 - the line profile needs to be spectrally resolved to distinguish between broad/ narrow component
 - the HFS lines to study LTE conditions
- Herschel/HIFI: first spectrally resolved OH lines (163.1 μm)
- OH/H₂O ratio: constrain chemistry
 Max Planck Institute for Radioastronomy
 Timea CSENGERI

Motivation

- 2Π_{1/2} (J=3/2-1/2) @ 1834.75 GHz
 @ 1837.82 GHz
- Targets: (ultra) compact HII regions
 - W3(OH)
 - NGC7538 IRS1
 - G10.62-0.39
- (ultra) compact HII: young and compact sources of radio free-free emission, but still embedded in a dusty envelope
- <u>Goal:</u> combined with radio cm transitions the physical conditions can be constrained

2Π_{3/2} (J=5/2-3/2) @ 2514 GHz

Typical UC-HII regions: W3(OH)

- W3 Giant Molecular Complex (Herschel)
- W3(OH) at high angular-resolution:

Typical UC-HII regions: NGC 7538

SOFIA/GREAT spectra – W3(OH)

 SOFIA/GREAT: DSB receiver → both the 1837 and 1834 GHz lines can be recorded!

SOFIA/GREAT spectra – **NGC7538 IRS1, G10.62-0.39**

Max Planck Institute for Radioastronomy

Timea CSENGERI

OH line parameters

- Gaussian line profiles
- HFS fit to the spectra in CLASS:

Source	Position		$T_{\mathrm{mb},RJ}$	v _{lsr}	Δv	Total $ au$	$T_{\rm ex}$
	RA[J2000]	Dec[J2000]	[K]	$km s^{-1}$	$km s^{-1}$		[K]
W3(OH)	02:27:03.90	61:52:24.6	1.83 ± 0.34	-45.70 ± 0.31	7.54 ± 0.87	0.1-2	40.2-5.1
G10.62-0.39	18:10:28.64	-19:55:49.5	1.34 ± 0.29	-3.17 ± 0.51	9.50 ± 1.15	0.1-5	30.2-3.7
NGC7538 IRS1	23:13:45.36	61:28:10.5	1.04 ± 0.34	-57.80 ± 0.43	5.46 ± 1.00	0.1–5	24.1-3.5

- S/N of the data allows a rough estimate of these parameters
- Line parameters consistent with Plume et al. (1997)
 - origin of dense turbulent medium
- presence of a broad component?

< 0.4 K

 2.5 THz line observed in absorption towards NGC7538 IRS1

Max Planck Institute for Radioastronomy

Models: NGC7538 IRS 1

- OH: very high critical density
 n > 10⁸ cm⁻³, LTE may not apply
- Envelope model: RATRAN

Hogerheijde & van der Tak (2000)

- Dust parameters:
 - ▶ $L = 1.3 \times 10^5 L_{\odot}$ van der Tak et al. (2000)
 - ▶ n₀=5.3 x 10⁴ cm⁻³; p = -1.0
 - ► X(OH) = 0.8 x 10⁻⁸
- RATRAN does not treat line overlap and overlap effects
- good fit to the observed lines!

OH emission in NGC7538 IRS1: well reproduced by an envelope model!

Max Planck Institute for Radioastronomy

Models: G10.6-0.39

- Envelope model: RATRAN
- Dust parameters:
- van der Tak et al. (2000)
- ▶ L = 1.3 x 10⁵ L⊙
- ▶ n₀=5.3 x 10⁴ cm⁻³; p = -1.0
- ▶ X(OH) = 0.8 x 10⁻⁸
- underestimating the observed lines

Models considering the radio lines

- the masing radio OH lines: transitions between the HFS levels are sensitive to the far-IR radiation field, effects of line overlap need to be considered
- Cesaroni & Walmsley (1991) LVG model:
 - far-IR radiation field
 - Ine overlap
- qualitatively explains the behavior of the radio lines

Models considering the radio lines

Models considering the radio lines

- Cesaroni & Walmsley model: qualitatively reproduce the radio OH lines for W3(OH)
- Including far-IR radiation field: good correspondence to the observed line intensities at n~2-3 x 10⁶ cm⁻³
- Excluding far-IR radiation ∑ field: underestimating the p line intensity
- Considering the envelope component (RATRAN): underestimates the line intensity

Timea **CSENGERI**

Max Planck Institute for Radioastronomy

Conclusions

- the far-infrared rotational lines of OH detected $2\Pi_{1/2}$ (J=3/2-1/2)
 - -> both doublets spectrally resolved
- the $2\Pi_{3/2}$ (J=5/2-3/2) line is in absorption
- Models:
 - low OH abundance envelope: good for NGC7538 IRS 1
 - not sufficient for W3(OH) and G10.62-0.39
 - Additional high-density, high OH abundance component is needed
 - W3(OH): The emission from W3(OH) comes predominantly from the UCHIIR and not from the hot core.
 - RATRAN modeling yields for the dense component $n(H_2) = -3x10^6$ cm⁻³
 - accounting for pumping by the FIR radiation field emitted by hot dust is needed

Outlook

- More OH lines observed towards typical UC-HII regions
- sources also observed with Herschel

	2П _{1/2} (J=3/2-1/2) 1837 GHz	2П _{3/2} (J=5/2-3/2) 2504 GHz
G10.47	\checkmark	\checkmark
G34.26	\checkmark	\checkmark
W49N	\checkmark	\checkmark
W49B	\checkmark	\checkmark
W33A	\checkmark	
G332.83	\checkmark	\checkmark

20

Outlook

Next steps:

- Include the latest collisional rate coefficients in the Cesaroni & Walmsley model
- Calibrate the radio lines to the far-infrared rotational lines of OH
- derive OH abundances in the various components: envelopes, shocks and outflows
- Cycle I data: reduction and data analysis in progress...