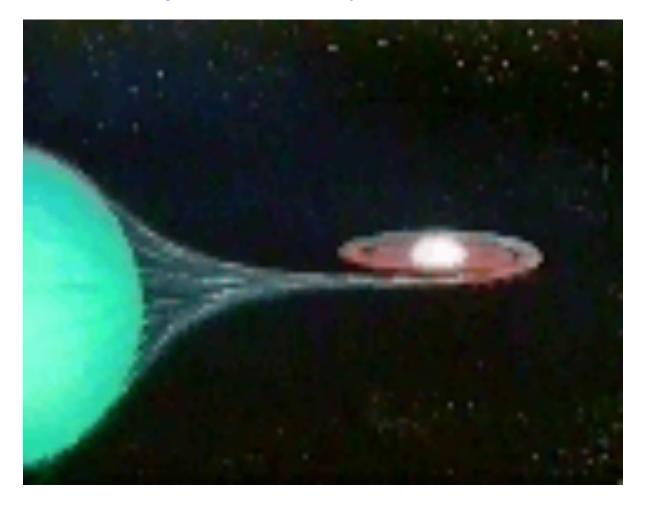

Observations of Novae in the Infrared

R. D. Gehrz^a, A. Evans^b, and C. E. Woodward^a

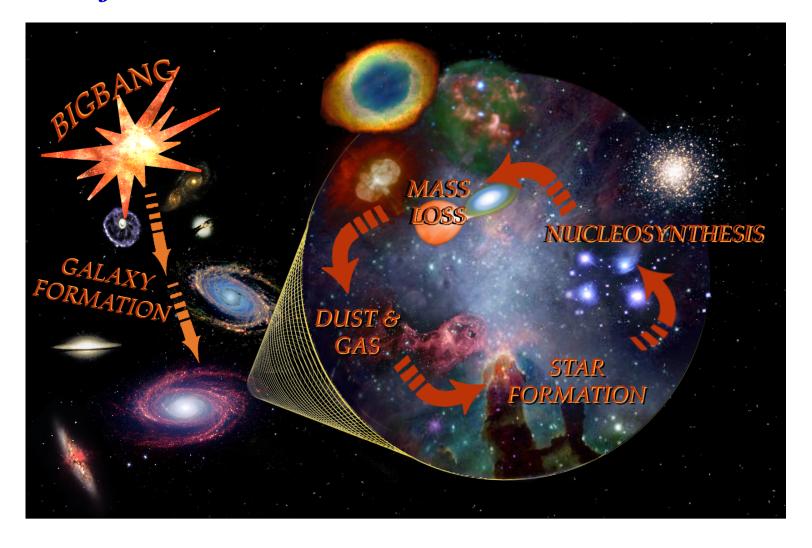
^aMinnesota Institute for Astrophysics, University of Minnesota, USA ^bAstrophysics Group, Lennard Jones Laboratory, Keele University, UK

SCTF Telecon 5-22-2013

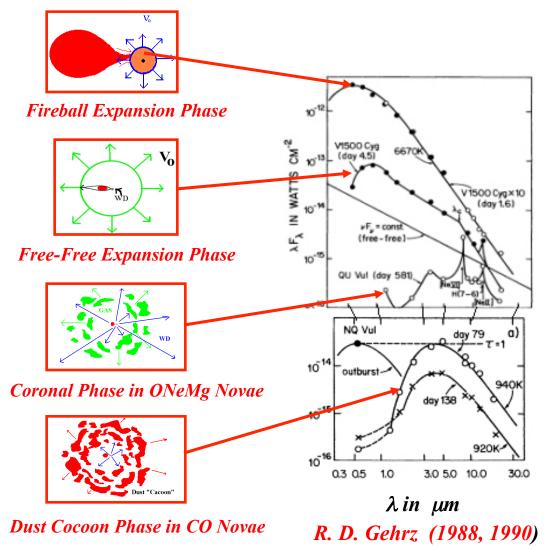

Outline

- Novae and Galactic chemical evolution
- Outburst Development in the IR
- IR Observations of gas and grains in the ejecta
- Nova grains in the primitive Solar System
- Future observations with SOFIA and JWST
- Summary

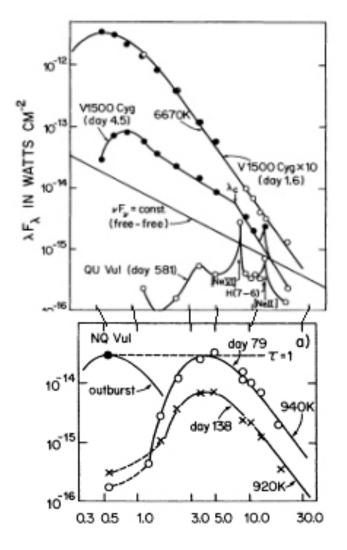
Group



A Classical Nova Explosion: Accretion followed by a TNR



The Role of Classical Novae in Galactic Chemical Evolution


IR Development Phases

- The luminosity of the outburst fireball is $L_o \ge L_{Edd}$
- λ_c measures n_H and the ejected ionized gas mass M_{gas} during the free-free expansion phase
- $L_o \ge L_{Edd} = L_{IR}$ for optically thick dust shells $\Rightarrow L_o =$ constant for a long time

Physical Parameters Derivable from IR SED's and Spectra

• T_{RR} in K and time of the outburst t_o in JD for expanding photospheres and dust shells

Group

- The apparent luminosity; for blackbodies, $f = 1.36 (\lambda f_{\lambda})_{max}$ in $W cm^{-2}$
- The free-free self-absorption wavelength λ_c in μm
- The outflow velocity V_o in Km s⁻¹ from emission lines

Driven to Discover

Mass of the Ejecta from IR SED's

• From Thomson scattering, which dominates the shell opacity during the fireball/free-free transition:

$$M_{gas} \approx 3.3 \times 10^{-13} (V_o t)^2$$
 in M_{W}

• From λ_c during the optically thin free-free phase:

$$M_{gas} \approx 5 \times 10^{-14} (V_o t)^{5/2} \lambda_c^{-1}$$
 in M_{W}

- $M_{gas} \approx 1-3x10^{-4} M_{\odot}$ for ONeMg WD's
- $M_{gas} \approx 1-5x10^{-5} M_{\odot}$ for CO WD's

These methods are independent of D as long as V_o is known from IR spectra

Ejected Gas Mass Determination from IR/Radio Observations: Conclusions

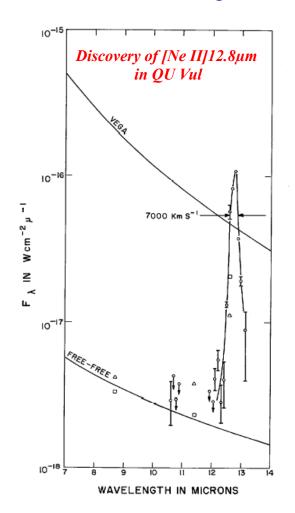
- Radio and IR observations give ejected masses of ionized gas that are consistent with one another
- These masses are lower limits to the true ejected mass since the neutral gas is not observed
- These lower limits are substantially larger than the ejected masses predicted by existing theoretical TNR models
- The potential of Classical Novae for making significant contributions to ISM/Solar System abundances is therefore substantial and may have been underestimated

Physical Parameters from IR/Radio SED's, Light Curves, and Direct Imaging

Angular radii of blackbody photospheres and shells:

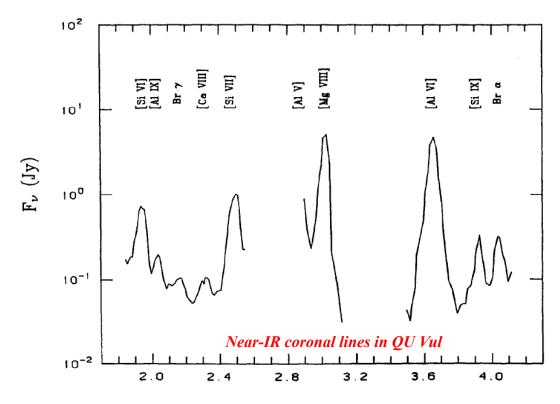
$$\theta_r \approx 10^{11} \sqrt{(\lambda f_{\lambda})}_{\text{max}} T_{BB}^{-2}$$
 in arcseconds

Distance by blackbody and direct expansion parallaxes:


$$D \approx 5.8 \times 10^{-7} V_{O} t \theta_{V}^{-1}$$
 in kpc

• The luminosity of the WD central engine given D:

$$L_o \approx 3 \times 10^{17} D^2 (\lambda f_{\lambda})_{\text{max}} \text{ in } L_{\text{w}} \text{ (Note that } L_o \geq L_{Edd})$$

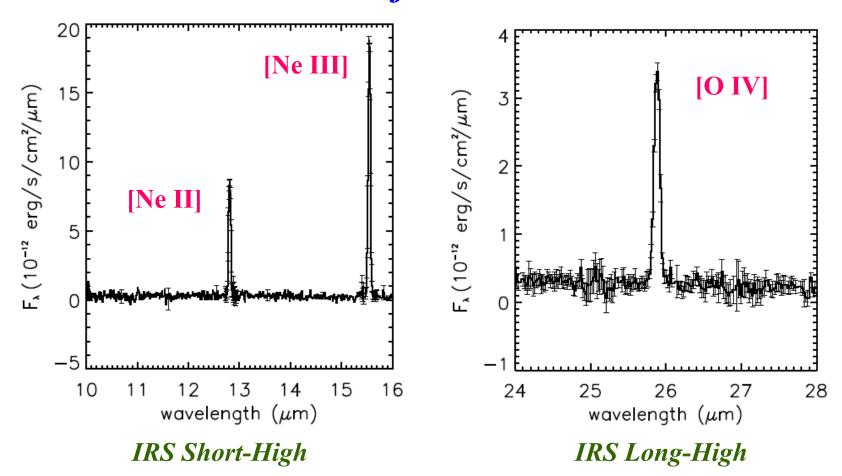

Driven to Discovers

Abundances from IR Forbidden Emission Lines

QU Vul: a TNR on an ONeMg WD

Group

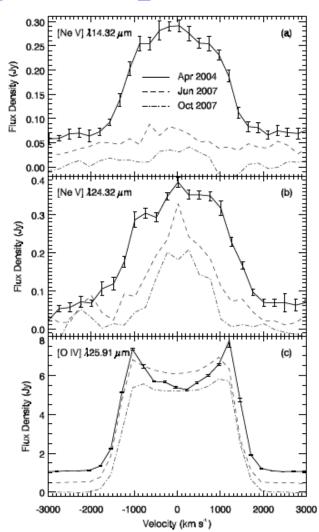
Gehrz et al. 1985, ApJ, 298, L47


Greenhouse et al. 1988, AJ, 95, 172

Group

Driven to Discover

Spitzer IRS Spectra of Nova QU Vul 20 Years after Outburst


R. D. Gehrz, et al. 2008, ApJ, 672, 1167

Velocity Resolved Spitzer Spectra: V1494 Aql

Line shapes reveal kinematic structure associated with different ionization potentials

Abundance Anomalies in "Neon" Novae

- ONeMg TNR's can produce and excavate isotopes of CNO, Ne, Na, Mg, Al, Si, Ca, Ar, and S, etc. that are expelled in their ejecta
- ONeMg TNR's are predicted to have highly enhanced ²²Na and ²⁶Al abundances in their outflows. These isotopes are implicated in the production of the ²²Ne (Ne-E) and ²⁶Mg abundance anomalies in Solar System meteoritic inclusions:

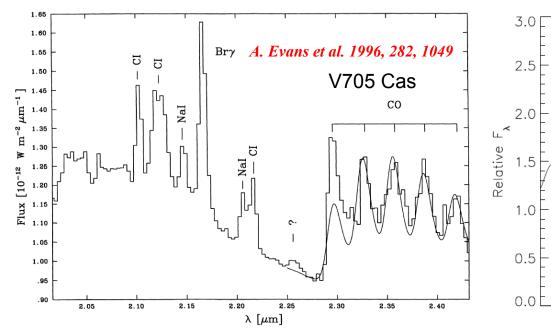
²²Ne via:
$$^{22}Na \rightarrow ^{22}Ne + e^{+} + v$$
 $(\tau_{1/2} = 2.7 \text{ yr})$

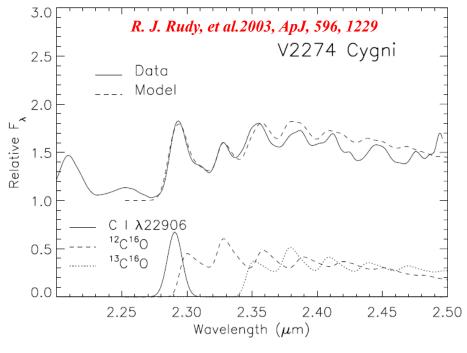
²⁶Mg via:
$$^{26}Al \rightarrow ^{26}Mg + e^{+} + v \quad (\tau_{1/2} = 7 \times 10^{5} \text{ yr})$$

Classical Novae and Abundance Anomalies

Gehrz, Truran, and Williams 1993 (PPIII, p. 75) and Gehrz, Truran, Williams, and Starrfield 1997 (PASP, 110, 3) have concluded that novae may affect ISM abundances:

- Novae process ≈ 0.3% of the ISM
- $(dM/dt)_{novae} \approx 7x10^{-3} M_{\odot} yr^{-1}$
- $(dM/dt)_{supernovae} \approx 6x10^{-2} M_{\odot} yr^{-1}$


Novae may be important on a global Galactic scale if they produce isotopic abundances that are ≥ 10 times SN and ≥ 100 times Solar; Ejected Masses calculated from IR/Radio methods give a lower limit (not all the lines from all ionization states can be observed)



Some of the More Extreme Chemical Abundances Observed in Classical Novae from IR Data

Nova	X	Y	$(n_X/n_Y)_{nova}$	Reference
			$(n_X/n_Y)_{\mathbb{K}}$	
V705 Cas	Silicates	H	≥17	Gehrz et al. 1995a
V1974 Cyg	N	H	≈ 50	Hayward et al. 1996
V1974 Cyg	0	H	≈ 25	Hayward et al. 1996
V1974 Cyg	Ne	H	≈ 50	Hayward et al. 1996
V705 Cas	C (grains)	H	≈ 45	Mason et al. 1997
V705 Cas	0	H	≥ 25	Salama et al. 1997 (ISO)
V705 Cas	C (grains)	H	≈ 20	Mason et al. 1998
CP Cru	N	H	75	Lyke et al. 2003 (ISO)
QU Vul	Ne	H	≥ 168	Gehrz et al. 2008 (Spitzer)


Molecular Emission in CNe and the ¹²C/¹³C Ratio

- V705 Cas: No conclusive evidence for $^{13}C^{16}O$ and $^{12}C/^{13}C \ge 5$
- V2274 Cyg: Both $^{12}C/^{16}O$ and $^{13}C/^{16}O$ required to fit the band heads: $^{12}C/^{13}C$ < 1.2, Solar value is 91 implying that ^{13}C is very overabundant

Dust Condensation in CO Novae

$$T_c \approx 1000 \; K$$

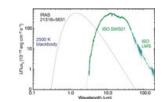
$$L_o \approx L_{Eddington}$$

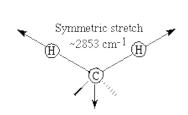
$$L_o \approx L_{Eddington}$$

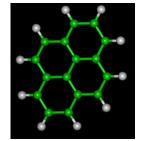
$$R_{c} = \left[\frac{L_{o}}{16\pi o T_{c}^{4}}\right]^{1/2}$$

$$t_{C} \approx \frac{R_{C}}{V_{O}}$$

IR Spectra of Dust Grains: Molecular Structure

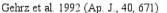

• Silicates: SiO₂ bond stretching and bending vibrational mode emission at 10 µm and 20 µm

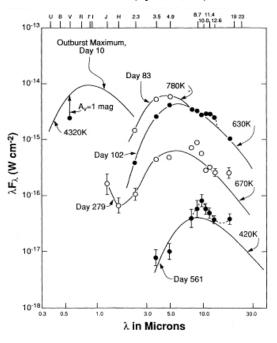


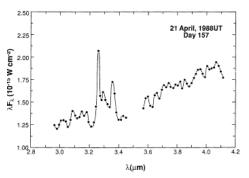


- Silicon Carbide: SiC stretching vibrational mode emission at 11.3 µm
- Carbon and iron: Smooth emissivity

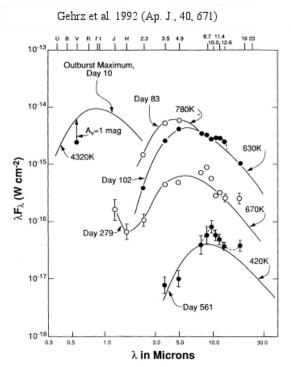
• Hydrocarbons (HAC and PAH): C-H stretching and bending at 3.3 µm, C-C stretching modes at 6 - 18 µm, drumhead modes at longer wavelengths

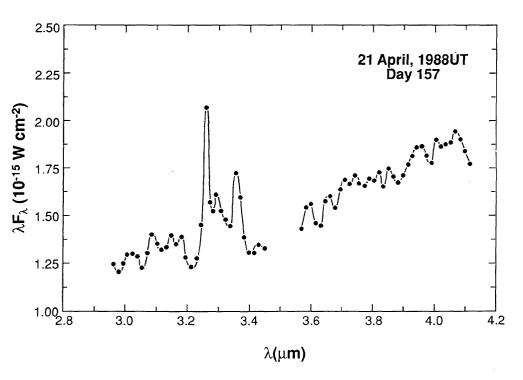





Driven to Discover

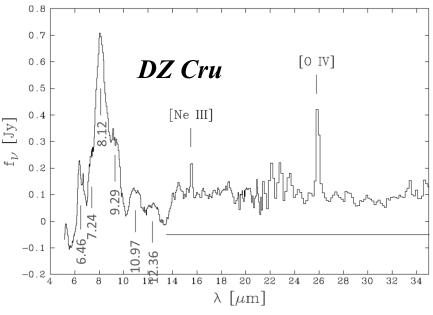
Nova Grain Properties

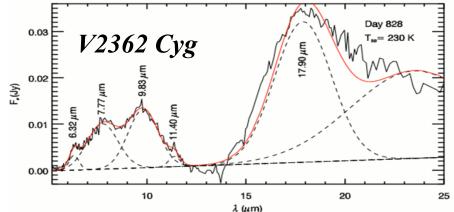



• A small fraction ($\leq 20\%$) of classical novae form dust

Group

- Novae produce carbon, SiC, silicates, and hydrocarbons
- Abundances can be derived from visual opacity, IR opacity, and IR emission feature strengths
- The grains grow to radii of 0.2- $0.7 \mu m$


Grain Condensation in Nova QV Vul 1987 (2)


- Carbon, Silicates, SiC, and PAH grains formed at different epochs suggesting abundance gradients in the ejecta.
- A. D. Scott (2000, MNRAS, 313, 775-782) has shown that this could be explained by an asymmetric ejection due to a TNR on a rotating WD

Spitzer Spectra of Hydrocarbon Grains in CNe

After A. Evans, et al. 2010, MNRAS, 406, L85

- Hydrocarbon UIR emission features are required to fit the IR spectra in detail
- The best fit is for Class C PAH's as described by E. Peeters et al. 2002, A&A, 390, 1089

See L. A. Helton, et al. 2011, EAS Publications Series, 46, 407

λ (μm)

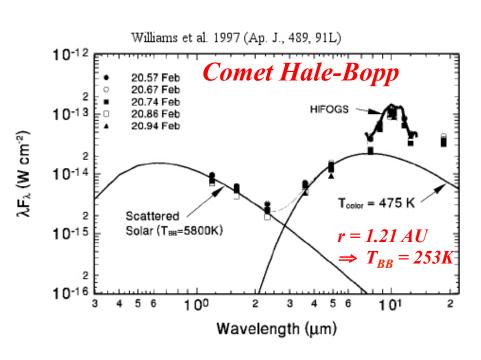
Grain Mass, Abundance, and Size

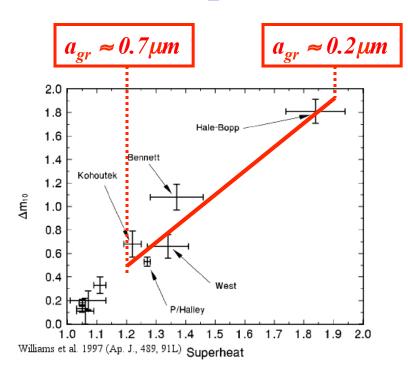
• M_{dust} from the infrared luminosity of the dust shell:

$$M_{dust} \approx 1.6 \times 10^{-11} \rho_{grain} V_O^2 t^2 T_{BB}^{-6}$$
 in M_{TM}

• Abundance of the grain condensables is given by:

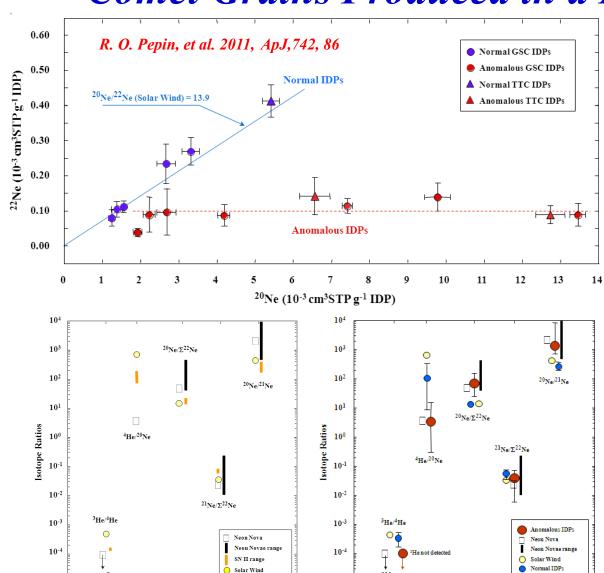
$$M_{dust}/M_{gas}$$
 compared to solar abundance


• Grain radius from the optical depth of the visual transition and L_{IR} :


$$a_{gr} \approx 2 \times 10^{22} L_o V_o^{-2} t^{-2} T_{BB}^{-6}$$
 in μm ($a_{gr} \approx 0.2$ -0.7 μm)

Driven to Discovers

Comet Dust and Nova Dust Compared



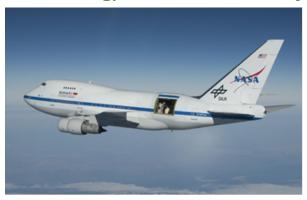
Group

- · Both Comet dust and nova dust contain silicates, carbon, and hydrocarbons
- Comets have coma emission dominated by grains the size of those produced in nova outflows

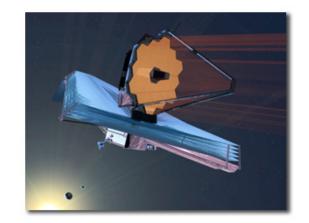
Comet Grains Produced in a Neon Nova?

- IDP's collected in the stratosphere from comets Grigg-Skjellerup and Tempel-Tuttle during perihelion passage show anomalous neon isotope ratios
- ³He/⁴He ratios confirm that these grains have not received substantial solar wind exposure
- The neon isotope ratios are consistent with yields predicted by models of ONe nova TNRs rather than models of SN II

10-5


<10-8

Future Nova Research from the Air and in Space


- Stratospheric Observatory for Infrared Astronomy (SOFIA)
 - 2.5-m clear aperture airborne telescope flying at 45,000 feet altitude
 - \triangleright 0.3 240 µm with spectral resolutions from $R = \lambda/\Delta\lambda = 200$ to 3,000
 - Covers all wavelengths and spectral resolutions needed to study nova dust mineralogy and abundances from IR forbidden emission lines

411260main_SOFIA_FirstDoorOpenFlight_480_DV.mov

- James Webb Space Telescope (JWST)
 - ► ~ 6.5-m aperture 30K telescope orbiting at L2
 - ho 0.6 28 μ m with spectral resolutions from $R = \lambda/\Delta\lambda = 100$ to 3,000
 - Ideal for studies of extragalactic novae

Summary and Conclusions

- IR/Radio data yield quantitative estimates for physical parameters characterizing the nova outburst: D, L_o , M_{gas} , T_{dust} , a_{dust} , M_{dust} , V_o , L_o , grain composition, and elemental abundances
- Nova ejecta produce all known types of astrophysical grains: amorphous carbon, SiC, hydrocarbons, and silicates. Some nova grains may have made their way into the primitive Solar System.
- Nova ejecta have large overabundances (factors of 10 to more than 100) of CNO, Ne, Mg, Al, S, Si
- Future prospects for IR observations of novae from the air and in space with SOFIA and JWST are promising

Backup

IR/Radio Observations of Classical Novae: Collaborators

- University of Minnesota: R. D. Gehrz, T. J. Jones, T. Harrison, A. Helton.,
- J. Lyke, C. G. Mason, E. P. Ney, M. Schuster, C. E. Woodward
- Cornell University: T. Hayward, J. R. Houck, J. Miles
- Caltech: K. Matthews, G. Neugebauer, K. Sellgren
- University of Wyoming: G. Grasdalen, J. Hackwell
- UK and Europe: M. Barlow, A. Evans, J. Krautter, A. Salama
- Additional Collaborators: M. Greenhouse (GSFC), R. M. Hjellming (NRAO),
 - S. G. Starrfield (AZ State), J. Truran (Chicago), R. E. Williams (STScI),
 - A. F. Bentley (Eastern Montana), D. H. Wooden (NASA ARC),
 - F. C. Witteborn (NASA ARC), S. A. Sandford (NASA ARC), L. J.
 - Allamandola (NASA ARC), J. D. Bregman (NASA ARC), M. Klapisch (NRL), S.
 - N. Shore (Pisa), R. M. Wagner (LBTO), G. Schwarz (AAS), D. Lynch
 - (Aerospace), R. Rudy (Aerospace), A. R. Taylor (Calgary), E. R. Seaquist (Toronto)

Ejected Mass from Modeling Radio Data

- The data are best fit by a "Hubble flow" (V deceases linearly as a function of depth in the ejecta) in an optically thin free-free shell
- This leads to a ρ x r³
 density distribution
 from which a shell
 mass can be determined
 given D and V(r)

Hjellming et al. 1979, AJ, 84, 1619

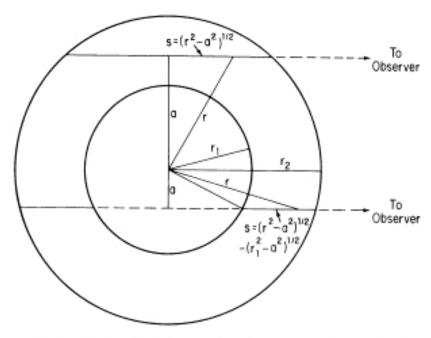
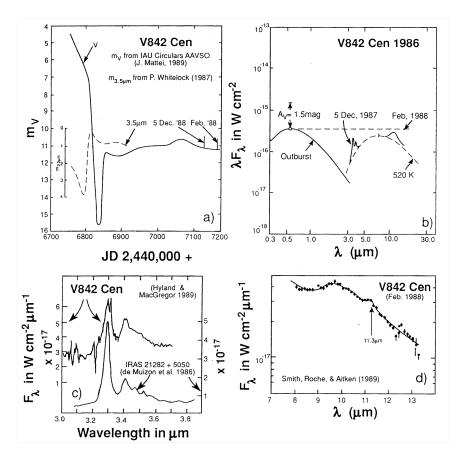


FIG. 2. The spherically symmetric shell geometry used for the nova models with lines of sight to an observer shown for the two cases for which the equation of transfer is integrated.

Chemical Abundances in Classical Novae from IR Data (1)

Nova	X	Y	$ (n_X/n_Y)_{nova} $ $ (n_X/n_Y)_{[X]} $	Reference
LWSer	Carbon dust	H	≥ 15	Gehrz et al. 1980a
QU Vul	Al	Si	70	Greenhouse et al. 1988
V1974 Cyg	Ne	Si	≈35	Gehrz et al. 1994
V705 Cas	Silicates	H	≥17	Gehrz et al. 1995a
V1974 Cyg	N	H	≈ 50	Hayward et al. 1996
V1974 Cyg	0	H	≈ 25	Hayward et al. 1996
V1974 Cyg	Ne	H	≈ 50	Hayward et al. 1996
V705 Cas	Carbon dust	H	≈ 45	Mason et al. 1997
V705 Cas	Ca	H	20	Salama et al. 1997 (ISO)
V705 Cas	0	H	≥ 25	Salama et al. 1997 (ISO)



Chemical Abundances in Classical Novae from IR Data (2)

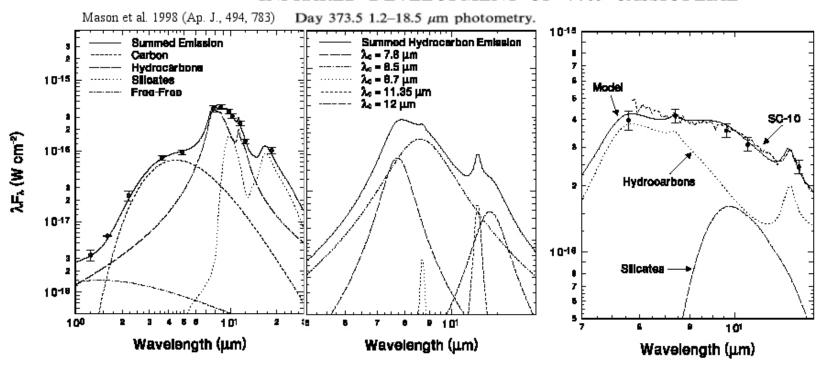
Nova	X	Y	$(n_X/n_Y)_{nova}$ $(n_X/n_Y)_{\boxtimes}$	Reference
V705 Cas	Carbon dust	H	≈ 20	Mason et al. 1998
V1425 Aql	N	Не	≈ 100	Lyke et al. 2002 (ISO)
CP Cru	N	H	75	Lyke et al. 2003 (ISO)
CP Cru	0	H	17	Lyke et al. 2003 (ISO)
CP Cru	Ne	H	27	Lyke et al. 2003 (ISO)
QU Vul	Ne	H	≥ 168	Gehrz et al. 2008 (Spitzer)
QU Vul	0	H	≥ 2.3	Gehrz et al. 2008 (Spitzer)

- Amorphous Carbon
- Hydrocarbons
- *Silicates*

From R. D. Gehrz, 1990, in Physics of Classical Novae, eds. A. Cassatella and R. Viotti, Springer-Verlag: Berlin, p. 138.

Jniversity of Minnesota

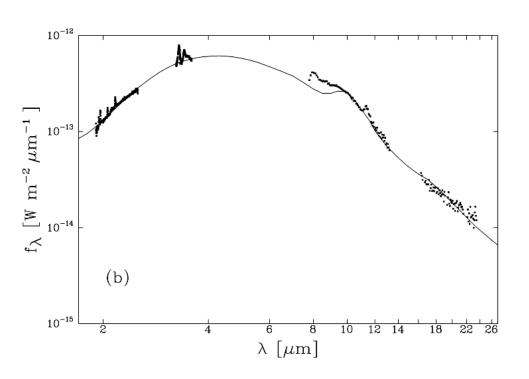
Driven to Discover®


*** Keele

University

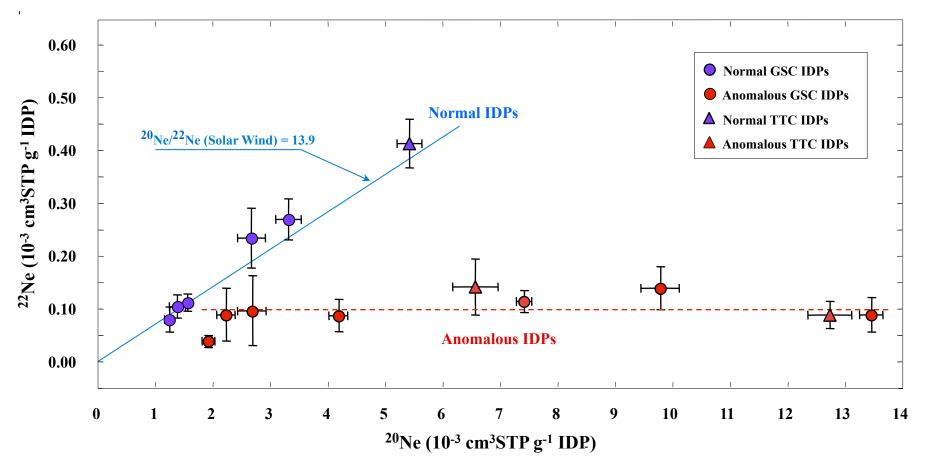
Driven to Discovers

Grain Condensation in V705 Cas (1993)

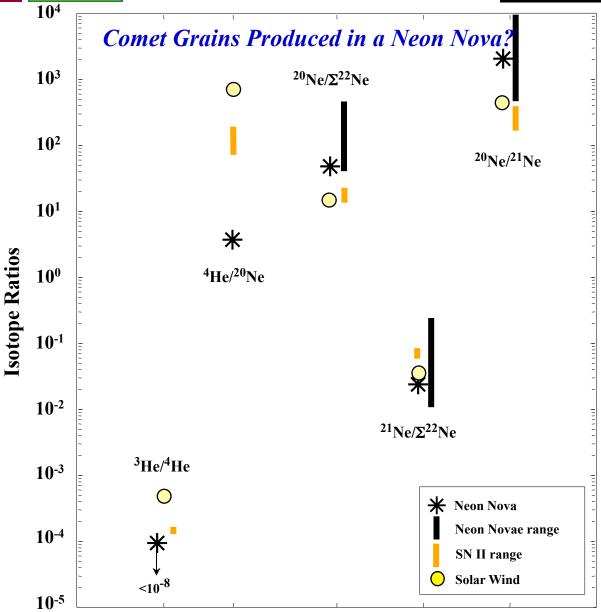

INFRARED DEVELOPMENT OF V705 CASSIOPEIAE

Free-free, amorphous carbon, silicates, and hydrocarbon UIR emission are required to fit the IR spectrum in detail.

UIR Hydrocarbon Emission in V705 Cas



UIR emission features in the near-IR and thermal-IR are required to fit the IR spectrum


From A. Evans et al. 2005, 360, 1483

Comet Grains Produced in a Neon Nova?

From R. O. Pepin, R. L. Palma, R. D. Gehrz, and S. Starrfield 2011, ApJ,742, 86

From R. O. Pepin, R. L. Palma, R. D. Gehrz, and S. Starrfield 2011, ApJ,742, 86

Minnesota Institute

for Astrophysics