Astrochemistry with SOFIA

1

Paola Caselli Center for Astrochemical Studies Max-Planck-Institute for Extraterrestrial Physics

Interstellar molecules and the seeds of life

4

KCN?

Known Interstellar Molecules (Total ~200)

Number of Atoms											
2	3	4	5	6	7	8	9				
H ₂	H ₂ O	NH ₃	SiH ₄	CH ₃ OH	CH3COH	CH ₃ CO ₂ H	CH ₃ CH ₂ OH				
OH	H ₂ S	H ₃ O ⁺	CH ₄	NH ₂ CHO	CH ₃ NH ₂	HCO ₂ CH ₃	(CH3)20				
SO	SO2	H ₂ CO	CHOOH	CH ₃ CN	CH3CCH	CH3C2CN	CH ₃ CH ₂ CN				
SO+	HN2 ⁺	H ₂ CS	HCCCN	CH3NC	CH ₂ CHCN	C ₇ H	H(CC) ₃ CN				
SiO	HNO	HNCO	CH ₂ NH	CH ₃ SH	HC4CN	H ₂ C ₆	H(CC) ₂ CH ₃				
SIS	SiH ₂ ?	HNCS	NH ₂ CN	C ₅ H	C ₆ H	CB-?	C ₈ H				
FeO?	H ₂ D ⁺	CH ₂ D ⁺ ?	CH ₂ CN	C 5S?	I-H ₂ C ₂ HOH	CH2OHCHO	C .??				
NO	NH ₂	CCCN	H2CCO	HC ₂ CHO	c-CH ₂ OCH ₂	I-HC ₆ H	- 5				
NS	Ha ⁺	HCO ₂ ⁺	C4H	CH2=CH2	C7						
HCI	NNO	I-CCCH	c-C ₃ H ₂	H2CCCC	-1		10				
NaCl	HCO	c-CCCH	I-H2CCC	HC ₃ NH ⁺							
KCI	HCO+	CCCO	C ₅	C ₅ N			CH3COCH3				
AICI	OCS	CCCS	SiC ₄	C6"?			CH3(CC)2CN?				
AIF	CCH	нссн	H 2CO+	-0			(CH ₂ OH) ₂ ?				
PN	HCS+	HONH+	HCCNC				1 2 12				
SIN	C-SICC	HCCN	HNCCC				11				
SIL	0.000	IL ON	TINCOO				1/(00) 011				
NH	000	H ₂ CN		Ormania	ale autors in arrean		H(CC)4CN				
UD	AINC	0-5103		Organic m	12						
	SICN			• morganic i	noiecules in plink		Calla				
CH	CCS						06116				
CH ⁺	C ₃						13				
CN	MgNC										
CO	NaCN						H(CC)5CN				
CS	CH ₂										
C ₂	MgCN						Total: 136				
SiC	HOC+										
CP	HCN										
COT	HNC										

http://www.astrochymist.org/astrochymist_ism.html

Interstellar molecules and the seeds of life

5

Known Interstellar Molecules (Total ~200) Number of Atoms 2 3 4 5 6 7 8 9 H2O NH₃ SiH₄ CH₃OH CH₃COH CH3CO2H CH₃CH₂OH H2 H2S NH₂CHO CH₃NH₂ HCO₂CH₃ (CH3)20 OH H30+ CH4 SO2 H2CO CH₃CN CH3CCH CH3C2CN CH3CH2CN SO CHOOH H2CS HCCCN CH₃NC CH₂CHCN C7H H(CC)₃CN SO+ HN2+ SiO HNO HNCO CH₂NH CH₃SH HC4CN H₂C₆ H(CC)₂CH₃ SiHo? HNCS NH2CN C₅H CH SiS Amino acetonitrile in SgrB2(N) H (Belloche et al. 2008) \mathbf{O} C H С H C Ν N 0 н H Η Glycine - the simplest amino acid

Pre-biotic molecules in meteorites

6

Photo & Collec ALLENDE, CV3, MEXICO Harald Stehlik

~70 amino acids have been identified in meteorites; 21 of these are used in life.

L-Alanine

L-Aspartic Acid

L-Glutamine

Glycine

⁷ Interstellar molecules and the seeds of life

Outline

- Formation of H₂
- Formation of H_3^+
- Deuterium fractionation
- The ortho-to-para H₂ ratio
- SOFIA discovery of para-H₂D⁺
- SOFIA and oxygen chemistry
- SOFIA and sulfur chemistry

The formation of H₂

The reaction that starts the chemistry in the interstellar medium is the one between two hydrogen atoms to form molecular hydrogen:

$$H + H \rightarrow H_2$$

This reaction happens on the surface of dust grains.

11

The H₂ formation rate (cm⁻³ s⁻¹) is given by (e.g. Gould & Salpeter 1963; Hollenbach & Salpeter 1970; Jura 1974; Pirronello et al. 1999; Cazaux & Tielens 2002; Bergin et al. 2004; Cuppen & Herbst 2005; Cazaux et al. 2008):

$$R_{H_2} = \frac{1}{2} n_H v_H A n_g S_H \gamma$$

= 10⁻¹⁷ - 10⁻¹⁶ cm⁻³s⁻¹

 $n_{H} \equiv$ gas number density $v_{H} \equiv$ H atoms speed in gas-phase $A \equiv$ grain cross sectional area $n_{g} \equiv$ dust grain number density $S_{H} \equiv$ sticking probability $\gamma \equiv$ surface reaction probability 12

The H₂ formation rate (cm⁻³ s⁻¹) is given by (e.g. Gould & Salpeter 1963; Hollenbach & Salpeter 1970; Jura 1974; Pirronello et al. 1999; Cazaux & Tielens 2002; Bergin et al. 2004; Cuppen & Herbst 2005; Cazaux et al. 2008):

$$R_{H_2} = \frac{1}{2} n_H v_H A n_g S_H \gamma$$

= 10⁻¹⁷ - 10⁻¹⁶ cm⁻³s⁻¹

 $n_{H} \equiv$ gas number density $v_{H} \equiv$ H atoms speed in gas-phase $A \equiv$ grain cross sectional area $n_{g} \equiv$ dust grain number density $S_{H} \equiv$ sticking probability $\gamma \equiv$ surface reaction probability

The formation of H_3^+

13

After the formation of molecular hydrogen, cosmic rays ionize H_2 initiating fast routes towards the formation of complex molecules in dark clouds:

$H_2 + c.r. \rightarrow H_2^+ + e^- + c.r.$

Once H_2^+ is formed (in small percentages), it very quickly reacts with the abundant H_2 molecules to form H_3^+ , the most important molecular ion in interstellar chemistry:

$H_2^+ + H_2^- \rightarrow H_3^+ + H_3^-$

¹⁴ Deuterium Fractionation at T < 20 K

 $H_3^+ + HD \rightarrow H_2^-D^+ + H_2^- + 230 \text{ K}$ (Watson 1974)

 H_2D^+/H_3^+ increases if the abundance of gas phase neutral species decreases (Dalgarno & Lepp 1984):

Guelin et al. 1977 Wootten et al. 1979 Guelin et al. 1982 Bergin et al. 1998 Caselli et al. 1998 Dalgarno 2006

Deuterated molecules are the best tracers of pre-stellar cores

Caselli 2011, IAU 280

17

Pagani et al. 1992 Gerlich et al. 2002 Hugo et al. 2009 Kong et al. 2015

ortho-H₂ can slow down / suppress the deuterium fractionation

The conversion from ortho to para H₂ is a slow process and it is required to explain the observed large deuterium fractions.

D_{frac} > 0.1, requires collapse to be proceeding at rates about 10 times slower than that of free-fall collapse.

Kong et al. 2015

²¹ Large (variations of) deuterium fractions

See also Friesen et al. 2010; Friesen, Kirk & Shirley 2013; Schnee et al. 2013

22 ortho- H_2D^+ The 372 GHz o-H₂D⁺ line is strong; its emission is extended ~5000 AU Only models including Vastel et al. 2006 100 all multiply deuterated forms of H_3^+ can reproduce these data (Roberts et al. 2003; 50 Walmsley et al. 2004; csec] Aikawa et al. 2005) $O-H_2D^+$ Caselli et al. 2003 CSO 0.8 H_2D^+ (1₁₀-1₁₁) $N_2H^+(1-0)$ 0.4 IRAM $N_2D^+(2-1)$ IRAM 0 -50-100-1500 6.5 7 7.5 8

 $\Delta \alpha$ [arcsec]

 $V_{lsr} (km s^{-1})$

²⁵ How much ortho-H₂ is in molecular clouds?

Upon formation: $oH_2/pH_2 = 3$

In diffuse clouds: $oH_2/pH_2 \sim 0.3-0.8$ (Crabtree et al. 2011)

In the pre-stellar core L183: $oH_2/pH_2 \sim 0.1$ (Pagani et al. 2009)

In the starless core B68: $oH_2/pH_2 \sim$ 0.015 (Maret & Bergin 2007)

In the pre-stellar core L1544: $oH_2/$ pH₂ ~0.003 (Kong et al. 2015)

Analytical relation between the H_2 and H_2D^+ ortho-to-para ratios

 $p-H_2D^+ + o-H_2 \Leftrightarrow o-H_2D^+ + p-H_2$ $o-H_2D^+ + o-H_2 \Leftrightarrow p-H_2D^+ + p-H_2$ $o-H_2D^+ + o-H_2 \Leftrightarrow p-H_2D^+ + o-H_2$

 $\frac{[o-H_2D^+]}{[p-H_2D^+]} = \frac{(k_1^+ + k_3^-) \times [o-H_2]/[p-H_2] + k_2^-}{(k_2^+ + k_3^+) \times [o-H_2]/[p-H_2] + k_1^-}$

Hugo et al. 2009; Brünken et al. 2014

FIRST DETECTION OF para-H₂D⁺ TOWARD IRAS16293-2422

para-H₂D⁺

Brünken, Sipilä, Chambers, Harju, Caselli, Asvany, Honingh, Kamiński, Menten, Stutzki, Schlemmer 2014, Nature

27

28

Brünken et al. 2014

The molecular gas in the cool envelope has been subject to chemical processing for at least one million years.

Brünken et al. 2014

from Vastel et al. 2004

31

$para-D_2H^+$

Extended para-D₂H⁺ emission (~40" ~5000 AU) toward L1688/H-MM1 (692 GHz; APEX-CHAMP+)

See Vastel et al. (2004) for first detection of para- D_2H^+

ortho-D₂H⁺ with SOFIA

32

Table 3. Requisite column densities for unit optical depth in the absorption line centre for the deuterated forms of H_3^+ . Spectroscopic data from Ramanlal & Tennyson (2004).

Species	Upper level	Lower level	E_l	Wavelength	$N_{\tau=1}$
			(cm^{-1})	(µm)	(cm^{-2})
H_2D^+ (para)	$(1, 1, 1)^a$	(0, 0, 0)	0.0	4.162	1.9×10^{14}
H_2D^+ (ortho)	(0, 0, 0)	(1, 1, 1)	60.0	4.395	6.1×10^{14}
H_2D^+ (ortho)	(2, 0, 2)	(1, 1, 1)	60.0	4.136	7.1×10^{14}
H_2D^+ (ortho)	(2, 2, 0)	(1, 1, 1)	60.0	3.985	4.9×10^{14}
D ₂ H ⁺ (ortho)	(1, 1, 1)	(0, 0, 0)	0.0	4.965	4.7×10^{14}
D_2H^+ (ortho)	(1, 0, 1)	(0, 0, 0)	0.0	4.72	5.5×10^{14}
D_2H^+ (para)	(1, 1, 0)	(1, 0, 1)	34.9	5.02	6.9×10^{14}
D_2H^+ (para)	(2, 0, 2)	(1, 0, 1)	34.9	4.63	7.6×10^{14}
D_3^+ (ortho)	$(0, 1, 1, 0, 1)^b$	(0, 0, 0, 0, 0)	0.0	5.296	2.2×10^{13}
D_3^+ (meta)	(0, 1, 0, 1, 1)	(0, 0, 1, 1, 0)	32.3	5.548	1.6×10^{14}
D_3^+ (meta)	(0, 1, 2, 1, -1)	(0, 0, 1, 1, 0)	32.3	5.198	9.9×10^{13}
D_3^+ (meta)	(0, 1, 2, 1, 1)	(0, 0, 1, 1, 0)	32.3	5.166	9.1 × 10 ¹³
D_3^+ (para)	(0, 1, 1, 0, -1)	(0, 0, 1, 0, 0)	43.6	5.433	4.5×10^{14}

^a $(J, K_{\rm a}, K_{\rm c})$.

^b $(\nu_1, \nu_2, J, G, U).$

Ro-vibrational lines

From SOFIA/EXES proposal of Goto et al.

Tielens & Hagen 1982; Cuppen & Herbst 2007; Miyauchi et al. 2008; Ioppolo et al. 2008, 2010; Cazaux et al. 2010, 2011; Taquet et al. 2013; Dulieu et al. 2013

van Dishoeck et al. 2011, 2014

It will be important in the future to obtain spectra of the highest quality for stars in lines of sight that sample diffuse-ISM dust over a range of visual extinctions, especially in the waveband containing the 5.85µm carbonyl feature as it should provide the most sensitive quantitative test for oxygenated organics. Both the Stratospheric Observatory for Infrared Astronomy and the James Webb Space Telescope will have instruments well matched to this task. – Whittet 2009

Tielens & Hagen 1982; Cuppen & Herbst 2007; Miyauchi et al. 2008; loppolo et al. 2008, 2010; Cazaux et al. 2010, 2011; Taquet et al. 2013; Dulieu et al. 2013

³⁸ First detection of OD outside the Solar System

OD/HDO between 17 and 90 (high compared to model predictions \rightarrow gas phase reprocessing through dissociative recombination of H₂DO⁺?) *Parallel observations of OD and OH could provide valuable constraints on the formation and fractionation of water.*

The mercapto radical

Cold SH is unobservable from the ground

The "ground state" rotational transition

 $^{2}\Pi_{3/2}$ J= 5/2 \rightarrow 3/2 at 1.383 THz

falls right in the gap between Bands 5 and 6 of *Herschel*'s HIFI spectrometer

The mercapto radical

 The GREAT (<u>German</u> <u>RE</u>ceiver for <u>A</u>stronomy at <u>T</u>erahertz frequencies) spectrometer on SOFIA has a receiver designed to cover this gap in <u>Herschel/HIFI</u> coverage (1250 – 1410 GHz)

Cycle 0: SH clearly detected in absorption toward W49N

8.0 Λ doubling **SEFIA** T_A* (K) Neufeld et al. 2012, A&A antenna temperature, 7.5 h, 7.0 6.5 DSB 6.0 1382.6 1382.8 1383.0 1383.2 Frequency (GHz) See also Neufeld et al. 2015

41

Courtesy of David Neufeld

Underlying thermochemistry

OH and H₂O can be produced via two pathways:

Low temperature: ion-molecule reactions, then dissociative recombination of H_3O^+ High temperature: neutral-neutral reactions

SH and H₂S are only produced at elevated temperatures:

Their presence is evidence for shocks or turbulent dissipation regions

Courtesy of David Neufeld

43

With **SOFIA** we can explore the foundations of astrochemistry:

44

• the deuteration of H_3^+ via HD – the starting point of D fractionation

• the ortho-to-para H_2 , via observations of para- H_2D^+ (and ortho- H_2D^+ with APEX) – important for D fractionation and cloud ages

- OH, OD (, carbonyl?) oxygen chemistry and water fractionation
 synergy with Herschel and APEX
- SH unveils the presence of shocks in diffuse clouds