SOFIA Tele Talk

June 3, 2015

Cold Chemistry in Space and Laboratory

Stephan Schlemmer Universität zu Köln

- H₂ Formation, OPR and Chemical Clocks
- $H_3^+/H_2^-D^+$ Isotopic Fractionation, $H_3^+/H_2^-D^+$, OPR
- $H_2D^+ + H_2$ THz Spectroscopy in Lab and Space

Life cycle of Stars

Hydrogen Formation on Grain Surfaces

$H + H + g \rightarrow H_2 + g$

Symmetry considerations and Pauli Principle

$$\begin{split} \psi_{\text{tot}} &= \psi_{\text{el}} \cdot \psi_{\text{vib}} \cdot \psi_{\text{rot}} \cdot \psi_{\text{nuc}} \\ \text{para} & \underset{J=0}{\text{even}} & \uparrow \downarrow - \uparrow \downarrow \text{ a} \\ \\ \text{ortho} & \underset{J=1}{\overset{\text{odd}}{\overset{}}_{J=1}} & \uparrow \downarrow + \uparrow \downarrow \text{ s} \\ \\ & \downarrow \downarrow \end{split}$$

Lowest Rotational States of H₂

Chemical Clock

Flower et al. A&A,449,621, 2006

SOFIA Tele Talk

June 3, 2015

Cold Chemistry in Space and Laboratory

Stephan Schlemmer Universität zu Köln

- H₂ Formation, OPR and Chemical Clocks
- $H_3^+/H_2^-D^+$ Isotopic Fractionation, $H_3^+/H_2^-D^+$, OPR
- H₂D⁺ + H₂ THz Spectroscopy in Lab and Space

Initial Reactions in Dense Interstellar Clouds

D. Smith and P. Spanel, Mass Spectrometry Reviews, 14 (1995) 255-278.

Detection of H₃⁺ in the Diffuse Interstellar Medium Toward Cygnus OB2 No. 12

B. J. McCall,* T. R. Geballe, K. H. Hinkle, T. Oka

Isotopic Fractionation

$H_3^+ + HD \rightarrow H_2D^+ + H_2$

E. Hugo, O. Asvany and S. Schlemmer, J. Chem. Phys. 130, Art.-No. 164302 (2009)

B. Parise, A. Belloche, F. Du, R. Güsten and K. Menten, A&A **526**, A31 (2011) C. Vastel and T.G: Phillips, APJ, **606**, L127 (2004)

Primary Deuteration Reactions

Isotopic Fractionation Ideal Case – Laboratory Situation

$$H_3^+ \xrightarrow{HD} H_2^+$$

 H_2^+

Equilibrium

$$[H_2D^+]/[H_3^+] = S(T) [HD]/[H_2]$$

 $S(T) = k_f/k_b$

Equilibrium

 $[H_2D^+]/[H_3^+] = S(T) [HD]/[H_2]$ $S(T) = k_f/(k_b + \alpha f_{e-} + k_M f_M)$

Isotopic Fractionation

Astrophysical Observations

Bergin et al. The Astrophysical Journal, 557:209-229, 2001

Enhancement Factor

Deuteration of H_3^+

<u>Theory</u> (Thermodynamics)				
[H <mark>D</mark>]/[H ₂] T S(T)	3*10 ⁻⁴ 10 K 3.6*10 ⁹			
[H ₂ D ⁺]/[H ₃ ⁺]	10 ⁶			

Experimental Method:

Electrodynamical Trapping

Sandra Brünken

Dieter Gerlich

Oskar Asvany 21

22-Pole Low Temperature Ion Trap

22-Pole Low Temperature Ion Trap

Example: $H_2^+ + H_2 \rightarrow H_3^+ + H_3$

FAQ: Why 22 poles?

Gerlich, Herbst and Roueff, Planetary and Space Science 50, 1291 (2002)

Current Experiments with para- H_2 (J=0,2,...)

Gerlich, Herbst and Roueff, Planetary and Space Science 50, 1291 (2002)

Experimental Results & Modelling

Hugo et al., J.Chem.Phys. 2009, 130, 164302

Isotopic Fractionation $H_3^+ + HD \rightarrow H_2D^+ + H_2$ and the $H_2 / H_2 D^+ OPR$

 $o/p-H_2D^+ + o/p-H_2 \rightarrow o/p-H_2D^+ + o/p-H_2$

Lowest energy levels of H₃⁺

Role of Nuclear Spin?

Conservation laws: E, J, P, I, ...

Laboratory Approach

H₂D⁺ State Distributions

Translation Rotation Nuclear Spin

Light Induced Reactions

Spectroscopy in Traps

relative B coefficients

transition	line position / cm ⁻¹	laser power / mW	meas B _{red}	cale B _{not}	1	
	line position / em	H_2D^+	moas D _{rel}	care D _{rel}		
$0_{00} \rightarrow 1_{11}$	6466.532	1.8	1	1		
$0_{00} \rightarrow 1_{01}$	6330.973	4.0	$0.32 {\pm} 0.02$	0.31		
$\mathbf{1_{11}} \rightarrow \mathbf{1_{10}}$	6303.784	5.0	0.29	0.29		
$\mathbf{1_{11}} \rightarrow \mathbf{0_{00}}$	6340.688	5.3	0.27 ± 0.03	0.27		
$\mathbf{1_{11}} \rightarrow \mathbf{2_{02}}$	6459.036	4.1	0.35 ± 0.04	0.34		Ť
		D_2H^+				
$0_{00} \rightarrow 1_{11}$	6536.319	1.6	1	1	B_1	B ₂
$0_{00} \rightarrow 1_{11}$	6482.033	3.8	$0.33 {\pm} 0.02$	0.32	1	2
				sign	al~B•po	⊨ p·P·k*

conclusions:

- 1) ab initio predicted (relative) B coefficients reliable
- 2) reaction probability independent of rovib. overtone excitation

Rotational Level Populations of H₂D⁺

SOFIA Tele Talk

June 3, 2015

Cold Chemistry in Space and Laboratory

Stephan Schlemmer Universität zu Köln

- H₂ Formation, OPR and Chemical Clocks
- $H_3^+/H_2^-D^+$ Isotopic Fractionation, $H_3^+/H_2^-D^+$, OPR
- H₂D⁺ + H₂ THz Spectroscopy in Lab and Space

H₂**D**⁺ **Detection in Space**

Light Induced Reactions probing H₂D⁺

Results

O. Asvany et al., PRL 100, 233004 (2008)

 $\Delta = 62 \text{ MHz} (!)_{46}$

Protostellar Cloud Core I16293A

Astrochemical Modelling

Collaboration: Jorma Harju, Olli Sipilä, Paola Caselli 50

H₂D⁺ observations give an age of at least one million years for a cloud core forming Sun-like stars

S. Brünken et al. Nature doi:10.1038/nature13924

SOFIA Tele Talk

June 3, 2015

Cold Chemistry in Space and Laboratory

Stephan Schlemmer Universität zu Köln

- H₂ Formation, OPR and Chemical Clocks
- $H_3^+/H_2^-D^+$ Isotopic Fractionation, $H_3^+/H_2^-D^+$, OPR
- H₂D⁺ + H₂ THz Spectroscopy in Lab and Space

High-Resolution Spectroscopy of Interstellar Molecules

Cologne Astrophysics Group Universität zu Köln

- Complex Molecules in Laboratory and Space Frank Lewen, Holger Müller, Christian Endres
- Carbon Chain Molecules
 Thomas Giesen
- Silcon Carbon Molecules
 Sven Thorwirth
- He-Clusters Leonid Surin
- Trap Experiments
 Sandra Brünken, Oskar Asvany, Pavol Jusko

THz Action Spectroscopy

LIR

Frequency Comb

Asvany et al. 2008, Phys Rev Lett

Gärtner et al. 2013, J. Phys. Chem. A Asvany et al. 2012, Rev Sci Instr

Infrared Action Spectroscopy

LIR

COLogne TRAP

2932.998459(7) cm⁻¹ T = 20.9 +/- 0.4 K

Asvany et al. 2012, Rev Sci Instr

Accuracy: 0.2 MHz

Asvany et al. 2013, Appl Phys B

THz Action Spectroscopy

2-photon LIR

Asvany et al. 2013, Appl Phys B Brünken et al. 2014, ApJL

Jusko et al. 2014, Phys Rev Lett