PHYSICAL CONDITIONS IN THE NUCLEUS OF OUR GALAXY

R. Güsten, A. Weiss, B. Klein, S. Heyminck, C. Risacher, T. Klein, C. Leinz, S. Philipp, + HEXGAL and GREAT teams

SOFIA Community Task Force Tele-Talks, July 2012

PHYSICAL CONDITIONS IN THE NUCLEUS OF OUR GALAXY

Astronomical image of the day

NASA, ESA, & D. Q. Wang (U. Mass, Amherst)

Spitzer: NASA, JPL, & S. Stolovy (SSC/ Caltech)

Collaborators:

R. Güsten, A. Weiss, B. Klein, S. Heyminck, C. Risacher, T. Klein, C. Leinz, S. Philipp, + HEXGAL and GREAT teams

SOFIA Community Task Force Tele-Talks, July 2012

> Martin et al. 2011

ax-Planck-Institu

OSHI image Herschel PACS/SPIRE HI-GAL

Wang et al.

Gas and dust properties

	GC	Disk	Reviews:			
Cloud sizes [pc]	20-30	few-30	Morris (1996),			
Vel. dispersion [kms ⁻¹]	15 – 30	≤ 5	Mezger (1996),			
Mean Gas Density [cm ⁻³]	104-5	10 ²⁻³	Güsten (2004)			
Magnetic Field [mG]	$\sim mG$	≤ 0.1	Morris et al. (2006)			
12 C/ 13 C ratio	20-25	75	Morris et al. (2006)			
Dus	Morris et al. (2009)					
Gas tem	Genzel et al. (2010)					
(Güsten et al. 1981, Morris et al. 1983 and Huttermesiter et.al. 1993)						
$T_{gas} > T_{dust}$ in galaxies Mauersberger et al. (2003)						
What is the dominant heating Mechanism?						
UV radiation, X-rays, shocks, Cosmic rays?						

Oldest SCUBA maps 450 and 850 microns (*Pierce-Price et al. 2004* and the latest Garcia-Marin et al. 2011)

And new map from SCUBA-2 (850)

http:// scuba2.wordpress.co m/tag/galactic-centre/

20

Higal, Molinari et al. (2011) and Etxaluze et al. (2011)(PACS 70, 160 +SPIRE 250, 350 500)

And I want to see the results from the new CND maps of Forcast!

Molecular gas in the GC

Other CO maps in the GC area

APEX

Atacama Pathfinder EXperiment

Max-Planck-Institut für Radioastronomie

Llano de Chajnantor

Latitude : 23°00'20.8" South

Longitude :67°45'33.0" West

Altitude : 5105 m

- Vertex Antenna, as the american contribution to ALMA
- 12m diameter, 14µm rms surface accuracy
- Alt-Az mounting
- 2 Nasmyth + 1 Cassegrain receiver cabins
- Wobbler (2Hz, <150" amplitude azimuthal chops)
- Beam width:

7.8" * (800 / f [GHz])

Heterodyne (from 210 to 1200 GHz), Bolometers (345 and 860 GHz), and POLKA in commissioning phase.

APEX maps CO (6-5) and (7-6) emission in the inner 50 pc of the Galaxy

Integrated emission dv=[-150,150]

The 50 inner parsecs of the Galaxy (25'x15')have been map the CO (6-5) and (7-6) transitions with CHAMP+. Beam sizes of ~9" and ~8", more than 100,000 spectra per map, ~20 hours observing with APEX. 10 RMS of 0.3 and 0.5 K.

APEX maps CO (6-5) and (7-6) emission in the inner 50 pc of the Galaxy

Integrated emission dv=[-150,150]

The 50 inner parsecs of the Galaxy (25'x15')have been map the CO (6-5) and (7-6) transitions with CHAMP+. Beam sizes of ~9" and ~8", more than 100,000 spectra per map, ~20 hours observing with APEX. 11 RMS of 0.3 and 0.5 K.

Interferometric observations

RGB composite SMA image of CN (green), H₂CO (blue), SiO (red) (Martín et al. 2012) combined with the VLA H90α recombination (orange, Roberts & Goss 1993) at ~ 4" ×3", and 2" resolutions

CO SED in galactic nuclei

CO SED in galaxies have been largely study for the high-z galaxies (IRAM and other ground based telescopes).

With HERSCHEL and now with SOFIA, we can access the nearby galaxies and the GC.

LVG modeling

CO SED in the Galactic Center

Herschel was launched the 14th of May, 2009, and is expected to live till February 2013.

HERSCHEL

- telescope (eff) diam
 telescope WFE
- telescope temp
- telescope emissivity
- abs/rel pointg (68%)
- science instruments
- science data rate
 - cryostat lifetime
- height / width
- launch mass
- power
- orbit 'large' Lissajous around L2
- solar aspect angle
- launcher (w Planck) Ariane 5 ECA
- (3.3) 3.5 m $< 6 \mu \text{m}$ < 90 K < 4% < 3.7"/0.3" 3 130 kbps > 3.5 years $\sim 7.5/4 \text{ m}$ $\sim 3300 \text{ kg}$ $\sim 1500 \text{ W}$ is around L2 60-120 degriane 5 ECA

Guaranty Time

Herschel EXtra GALactic KP:

Physical and chemical conditions of the ISM in Galactic Nuclei

PI: R. Güsten

Science from observations with GREAT during the Early Science phase

GREAT was operated during SOFIA's Short (4 flights) and Basic Science (12 flights) phase to address a wide variety of timely astrophysical topics. A total of 18 scientific publications was submitted for a Special Feature of Astronomy & Astrophysics (Vol&, May 2012), complemented by 4 technical papers describing the GREAT instrument.

T. Csengeri	SOFIA observations of far infrared hydroxyl emission toward ultra-compact HII/OH maser regions
J. Eislöffel	SOFIA observations of CO(12 11) emission along the L1157 bipolar outflow
A. Gomez	High-J CO emission in the Cepheus E protostellar outflow observed with SOFIA/GREAT
U. Graf	[¹² CII] and [¹³ CII] 158 m emission from NGC 2024: Large column densities of ionized carbon
A. Gusdorf	Probing MHD Shocks with High-J CO Observations: W28F
B. B. Mookerjea	The structure of hot gas in Cepheus B
D. Neufeld	Discovery of interstellar mercapto radicals (SH) with the GREAT instrument on SOFIA
Y. Okada	Dynamics and PDR properties in IC1396A
B. Parise	Detection of OD towards the low-mass protostar IRAS 16293-2422
JP. Perez-Beaupuits	The ionized and hot gas in M17 SW: SOFIA/GREAT THz observations of [C II] and ¹² CO J=13-12
M. Requena	GREAT confirms transient nature of the Circumnuclear Disk
M. Röllig	[CII] gas in IC 342
R. Sahai	Probing the Mass and Structure of the Ring Nebula in Lyra with SOFIA/GREAT Observations &
G. Sandell	GREAT [CII] and CO observations of the BD+40 ^{i_{c}½} 4124 region
N. Schneider	Globules and pillars seen in the [CII] 158 m line with SOFIA
R. Simon	SOFIA observations of S106: dynamics of the warm gas
H. Wiesemeyer	High-resolution absorption spectroscopy of the OH 2PI3/2 ground state line
F. Wyrowski	Terahertz ammonia absorption as a probe of infall in high-mass star forming clumps
S. Heyminck et al.	GREAT: the SOFIA high-frequency heterodyne instrument
P. Pütz et al.	Terahertz hot electron bolometer waveguide mixers for GREAT
B. Klein et al.	High-resolution wide-band Fast Fourier Transform Spectrometers
Xin Guan et al.	GREAT/SOFIA atmospheric calibration

CND with Alma and Sofia

High resolution images of the molecular and ionize gas in the CND

Martin et al.

Requena-Torres et al.

Summary

- High spectral and spatial resolution maps of the CO (6-5) and CO (7-6) lines have been observed with the CHAMP+ instrument in APEX
- APEX have been used, together with IRAM-30M, HERSCHEL and SOFIA, to study the CO excitation in the CND with better spectral and spatial resolutions than before. Updating the physical conditions there
- Using this data we conclude that the (inner) CND is best described by a collection of transient filamentary streamers and clumps (Güsten et al. 1987). Its mass is comparatively low, few 10⁴ Msun, which has implications on the mass accretion rate toward the central object (Genzel et al. 2010)
- The APEX maps still contain information of several regions of interest, that need extra work and data. And other data from this telescope and HERSCHEL are still being analyze
- APEX will be used to obtained detailed CO (3-2) and ¹³CO (3-2) emission in the regions of interest
- With Sofia/GREAT we will study the variations in the excitation along the CND
- ALMA will be used to study the ionized material in the CND

Transition	E _{up} [K]	v[THz]	$\int T_{mb} \cdot dv $ [K km/s]		
			ČND-S	CND-N	
12 CO(2-1)	5.5	0.230	797.4	670.4	Ι
13 CO(2-1)	5.3	0.220	49.0	21.2	Ι
12 CO(3-2)	16.6	0.346	1668.3	852.9	А
12 CO(4-3)	33.2	0.461	2199.6	1023.5	А
$^{12}CO(6-5)$	83.0	0.691	1782.3	786.7	А
13 CO(6-5)	79.3	0.661	165.5	67.2	А
¹² CO(7-6)	116.2	0.807	1753.0	708.6	А
12 CO(10-9)	248.9	1.152	841.5	242.1	Η
12 CO(11-10)	304.2	1.267	818.8	218.0	G
12 CO(13-12)	431.3	1.497	391.6	77.0	G
13 CO(13-12)	412.3	1.431	26.5		G
12 CO(16-15)	663.4	1.841	188.2	34.4	G

Modeling results

	gas phase	r ₀ (pc)	T _{kin}	$\log n(H_2)$	$\log N(H_2)$
CND-S	low exc.	0.31	200^{+300}_{-70}	$4.5^{+0.2}_{-0.5}$	22.64
	high exc.	0.08	500^{+100}_{-210}	$5.2^{+0.4}_{-0.2}$	23.34
CND-N	low exc.	0.32	175^{+425}_{-45}	$4.5_{-0.7}^{+0.3}$	22.35
	high exc.	0.06	325^{+275}_{-165}	$5.3^{+0.6}_{-0.3}$	23.15

