HAWC: SOFIA's Facility Far-IR Camera and Polarimeter

C. Darren Dowell (Jet Propulsion Laboratory) for the HAWC+ Collaboration 2014 August 6

Outline

- HAWC+ upgrade program and team
- elements of HAWC
- project schedule
- initial astrophysics programs

HAWC: High-resolution Airborne Wideband Camera, built by U. Chicago, P.I. Al Harper

HAWC+: upgrade program, 2013-2016, led by JPL

The completed instrument will fly as "HAWC".

SOFIA 1G/2G Instrument Suite

Far-IR Polarimetry: Dust & Magnetic Fields

- λ = 30 1000 µm continuum primarily dust emission, so far-IR polarimetry is an indispensible probe of magnetic fields in neutral ISM.
 Even molecular clouds are mostly transparent at λ ≈ 100 µm.
- Multiple bands distinguish components with different temperatures.
 - Far-IR polarization spectrum also shows effects of grain emissivities.

HAWC+ Upgrade Program

- April 2012: *initial selection by NASA of HAWC upgrade investigations (JPL/Dowell & Goddard/ Staguhn)*
- July 2012: HAWC (U. Chicago) passes Pre-Ship Review
- October 2012: final selection and approval of merged upgrade investigation
- February May 2013: co-investigators/ contractors begin funded upgrade work, toward commissioning in 2015

HAWC+ Instrument Upgrade Team

Dan Barber

Louise Hamlin

Armen Toorian

Caltech

Gene Hilton NIST

Steve Maher, SSAI

Christine Jhabvala

Leroy Sparr

Elmer Sharp

Troy Ames Dave Chuss

Ed Wollack

Northwestern U

Al Harper

Giles Novak

Nicholas Chapman

Marc Berthoud

Shannon Towey Leslie Looney U. Chicago / Caltech MURF U. Illinois

Ernie Buchanan

John Vaillancourt Eric Sandberg

Murali Kandlagunta John Miles

Peter Shirron Harvey Moseley

Jessie Dotson, NASA-Ames

HAWC+ Builds on HAWC

HAWC at Yerkes Observatory (U. Chicago)

HAWC leaves Yerkes – June 3, 2013

HAWC arrives at JPL – June 5, 2013

System Tests at JPL

A Tele-Talk

HAWC+ schematic optical path

HAWC(1G) detector: 12×32

HAWC+ on SOFIA: 64×40 (design; requirement is 32×40)

Goddard/NIST Detector Team

- Detector requirements, packaging, testing: J. Staguhn, S. Banks, D. Benford, E. Buchanan, H. Moseley, E. Sharp, E. Wollack
- Detector design, fab, assembly: C. Jhabvala, T. Miller, R. Brekosky, M.-P. Chang, J. Chervenak, N. Costen, A. Datesman, E. Leong
- SQUID Multiplexer: G. Hilton
- Detector subsystem management: L. Sparr

detector electromagnetic design: Backshort-Under-Grid architecture

detector electrical design

- Superconducting **Transition Edge Sensor** (TES) bolometer
- Superconducting **Quantum Interference Device (SQUID) readout**

Pixel Layout

SOFIA Tele-Talk / HAWC

- 1.135mm pitch
- Fabricated on 1.46µm single crystal silicon

Figure Color Legend:

- Gray: Silicon membrane and frame
- White : Mo/Nb electrical leads
- Pink/Red: TES and NMBs
- Green: Palladium
- Black: Etched void (This layer etches the legs)

Flux-Switched Time-Domain Multiplexer

- Row Select switches current into switch inductor
- Switch critical current is large when flux is zero, hence is in superconducting state and shorts out SQUIDs
 → channel off
- Switch critical current near zero at some applied flux (^Φ₀/₂) and acts like a resistor (ohms), biasing SQUIDs → channel on
- Switching set by geometry of inductance

• 40 rows total

Flux-Switched Time-Domain Multiplexer

- Row Select switches current into switch inductor
- Switch critical current is large when flux is zero, hence is in superconducting state and shorts out SQUIDs → channel off
- Switch critical current near zero at some applied flux (^Φ₀/₂) and acts like a resistor (ohms), biasing SQUIDs → channel on
- Switching set by geometry of inductance

Through-Wafer ViaTES routed to SQUID by Through-Waver Via

Array Hybridization: Bump Bonding

HAWC+ Detector Packaging

room-temp. readout electronics: MCEs

- SQUIDs are operated, and TESs biased, with Multi-Channel Electronics from U. British Columbia (originally designed for SCUBA2)
- 4 crates, each supporting 32x40 detectors
- Also shown: wiring feedthrough and conduit, DC-DC converters

MCE readout system on HAWC

2014 Aug 6

detector specifications

Performance Parameter	Design Value	Comments
array format	32x40 elements, 1.135 mm pitch	2 arrays, each with design supporting 64x40
quantum efficiency	50%	for 1 mm ² area
TES transition temperature	300 mK	
operating temperature	130 mK	
thermal conductance	1.5 pW/mK	at transition temperature
saturation power	140 pW	>300K load in all bands
electrical NEP	7.5x10 ⁻¹⁷ W Hz ^{-1/2}	referred to absorbed power; photon: $\geq 2 \times 10^{-16} \text{ W Hz}^{-1/2}$
time constant (natural)	1.7 ms	C/G
time constant (effective)	~200 μs	with feedback

Cold Plate Arrangement

Magnetic Shielding Mag shielding plan employs multiple layers of superconducting and high-mu materials.

Mag Shield Model Performance

Max field strength at initiation of temperature control (0.5 T field at magnet bore): ignoring Earth's field.

Have to model each cutout in SC shield separately.

control is well below 0.345 G requirement.

HAWC Optics Pupil Assembly/Polarimeter

Polarimeter Mechanisms

- Carousel rotates to select one of four half-wave plates, imaging aperture, or one of three offset apertures.
- Each rotating half-wave plate is suspended with a grooved disc and three Vespel wheels. Each of the wheels is held with ball bearings on its axis, and one wheel is mounted with a flexure which displaces in the plane of the wheels.
- The half-wave plate disc is magnetically coupled to a drive disc, which is edge driven by the "mouse" motor, through a gear coupling.

HAWC & Polarimeter Testing (July 2014)

1400

140707 000 00HA030.chop.fla.fits - Detector7-7

- Shown is the signal for one detector as half-wave plate is rotated, observing a highly polarized source, in 62 µm band.
- >85% polarization modulation efficiency in each of the 5 bands.

Instrumental (false) polarization is on average low, < 0.5%, in each band.

600

2014 Aug 6

SOFIA Tele-Talk / HAWC

HAWC Observing Modes

- polarimetry:
 - Traditional chopping and nodding
 - combined with stepped rotation of half-wave plate (possibly slow rotation in future)
 - Gives (I,Q,U) Stokes parameters
- imaging only:
 - Preference is to use a crosslinked scan (without chopping) for best sensitivity and fidelity.
 - Used efficiently on CSO and elsewhere.

HAWC Data Acquisition Software

• We are adding new upgrade features into HAWC(1G) Javabased Control and Data Handling software (related to IRC).

HAWC Data Acquisition Software

2014 Aug 6

SOFIA Tele-Talk / HAWC

Polarimetry, Level 0 to 1.5

HAWC Predicted Performance

HAWC+ predicted performance for continuum imaging and polarimetry.							
Instrument	Instrument Parameter	Band A	Band B	Band C	Band D	Band E	
HAWC and HAWC+	wavelength (μm)	53	62	89	155	216	
	angular resolution (arcsec FWHM)	5.4	6.4	9.0	16	22	
	imaging NEFD ^a (Jy/beam s ^{1/2})	0.93	0.80	0.79	0.64	0.55	
HAWC+	field of view (square arcmin)	4.6	11	11	33	59	
	min. flux density ^b for s(P) < 0.3% in 1 hr (Jy/beam)	10.7	9.2	9.1	7.3	6.3	
	min. surface brightness ^b in 1 beam for s (P) < 0.3% in 1 hr (MJy/sr)	13,500	8200	4100	1090	480	
^a Noise Equivalent Flux Density gives the flux density detectable with signal-to-noise=1 in a 1 second integration time. Signal-to-noise scales as (flux/NEFD) × (time) ^{1/2} .							
because could be available officiency and an instrument such as UNNC, which simultaneously detects five relayingtion states. The monthly							

^bAssumes 60% observing efficiency and an instrument such as HAWC+ which simultaneously detects two polarization states. The quantity σ(P) refers to the uncertainty in the measured degree of polarization, expressed as a percentage.

HAWC Project Dates

- 2014 January 10-11: Critical Design Review
- 2014 May-July: polarimetry with 12x32 array
- 2015 March: new detector arrays integrated into HAWC; final system test runs
- 2015 August: HAWC delivered to Palmdale AOF
- 2015 October: first commissioning campaign on SOFIA
- 2015 December: second commissioning campaign; first science campaign

HAWC/SOFIA Science Goals

•

The blue region can be mapped in part of a single SOFIA flight, resulting in ~10,000 detections of polarization.

SOFIA Tele-Talk / HAWC

Galactic Center

Chuss et al. (2003): CSO and KAO polarization measurements suggest toroidal field in dense material and poloidal in more diffuse, consistent with model of Uchida et al. (1985).

²⁰¹⁴ Aug 6

Characterizing Magnetic Field Strength

Simulated Molecular Clouds

P=0.1

strong field – small dispersion

(Ostriker, Stone, & Gammie 2001)

 Approach based on Chandrasekhar & Fermi (1953)
 B²

$$\overline{4\pi\rho\sigma^2(v)} \approx \overline{\left(\Delta\phi\right)^2}$$

- with modeling by several research groups to account for effects of beam and line-of-sight averaging
- Need velocity dispersion from submm/radio telescope observations of molecules.

Characterizing Magnetic Field Strength

Simulated Molecular Clouds

_ P=0.1

weak field - large dispersion

(Ostriker, Stone, & Gammie 2001)

 Approach based on Chandrasekhar & Fermi (1953)
 B²

$$\overline{4\pi\rho\sigma^2(v)} \approx \overline{\left(\Delta\phi\right)^2}$$

- with modeling by several research groups to account for effects of beam and line-of-sight averaging
- Need velocity dispersion from submm/radio telescope observations of molecules.

Dust Grain Alignment

- Dust grain alignment is an unsolved problem of astrophysics. Only recently has radiative alignment become favored theory over paramagnetic relaxation.
- No matter what, alignment is with respect to magnetic field: Larmor precession (t $\approx 10^6$ s) washes out alignment with respect to any other direction. (Martin 1971)
- Radiative alignment, requiring asymmetric grains and an asymmetric radiation field, is currently the leading theory (Dolginov & Mytrophanov 1976; Draine & Weingartner 1996/7; Lazarian & Hoang 2007).
 - Test #1: Does the degree of grain alignment depend on the strength of the radiation field?
 - Test #2: Is there spectral evidence for better alignment of large grains?

BLASTpol

2014 Aug 6

SOFIA Tele-Talk / HAWC

HAWC Project Dates

- 2015 March: new detector arrays integrated into HAWC; final system test runs
- 2015 Spring: SOFIA Cycle 4 proposal call
- 2015 August: HAWC delivered to Palmdale AOF
- 2015 October: first commissioning campaign on SOFIA
- 2015 December: second commissioning campaign; first science campaign