Physical conditions in dense molecular knots in the supernova remnant Cassiopeia A

Sofia Wallström Onsala Space Observatory

In collaboration with C. Biscaro, O. Berné, J. Black, I. Cherchneff, S. Muller, J. Rho, F. Salgado, A. Tielens

Dust in the universe

- Large dust masses seen in galaxies at z > 6- M > 10⁸ M_{\odot}⁽¹⁾ formed in < 1 billion years
- Competing theories:
 - Supernovae⁽²⁾
 - Short timescales, plenty of refractory elements
 - AGB stars⁽³⁾
 - Main dust producers in our galaxy, largest stars may have short enough timescales
 - ISM growth⁽⁴⁾
 - Supernovae/AGB dust production insufficient so dust is grown mainly in the ISM, seeded by supernovae/AGB

⁽¹⁾e.g. Bertoldi et al. 2003 ⁽²⁾e.g. Gall et al. 2011 ⁽³⁾e.g. Valiante et al. 2009 ⁽⁴⁾e.g. Michalowski et al. 2010

Dust in supernovae

- Theoretically, supernovae produce enough dust to explain high-z observations

 0.1 to 1 M_☉ per SN⁽¹⁾
- But only small amounts of dust seen a few years post-SN
 - -10^{-5} to 10^{-2} M_{\odot} from IR observations⁽²⁾
 - Note this is warm dust

⁽¹⁾e.g. Todini & Ferrara 2001, Cherchneff & Dwek 2010 ⁽²⁾e.g. Lucy et al. 1989, Sugerman et al. 2006

Dust in supernova remnants (1)

- Larger cold dust masses seen in SNRs
 - About 0.1 M_{\odot} in Cas $A^{(1)}$
 - -0.4 to 0.7 M_{\odot} in SN 1987A⁽²⁾
 - Modeling shows dust growth continues ~5 years after SN explosion⁽³⁾
- But few young SNRs to study SN dust yields

 Have to be nearby and young enough to
 distinguish SN dust from pre-existing ISM dust

⁽¹⁾Rho et al. 2008, Barlow et al. 2010
⁽²⁾Matsuura et al. 2011
⁽³⁾Sarangi & Cherchneff 2015

Dust in supernova remnants (2)

- Also, observed SNR dust not yet reprocessed by the reverse shock
 - When SN shockwave sweeps up enough circumstellar/ISM material, it forms a reverse shock
 - Shock velocity ~1000 km/s

 Models estimating dust destruction vary widely depending on e.g. grain composition/size and ejecta composition, destroying ~10-100% of SN dust⁽¹⁾

⁽¹⁾e.g. Nozawa et al. 2007, Silvia et al. 2012

Dust survival: ejecta composition

- Dense SN ejecta knots likely to be very important for dust survival
 - Rayleigh-Taylor instabilities following SN explosion
 - Highly inhomogeneous ejecta: dense knots
 - Dense knots promote formation of molecules and dust growth
 - High density also slows reverse shock
 - ~200 km/s shock does limited damage to dust⁽¹⁾
- In general, need more observational data to constrain dust destruction models

Cassiopeia A

- One of the rare SNRs we can observe ejecta
 - ~330 years old and 3.4
 kpc away
- Large dust masses
 - − 0.025 M_☉ warm dust⁽¹⁾
 associated with reverse shock
 - 0.075 M_{\odot} unshocked cold dust⁽²⁾

⁽¹⁾Rho et al. 2008 ⁽²⁾Barlow et al. 2010

Cassiopeia A

- Ro-vibrational CO detected⁽¹⁾
 - In many small (<0.8") knots
 - Coincident with reverse shock
- Difficult to derive physical conditions

SiO2 dust (red) CO (green)

Herschel PACS observations (1)

- Brightest CO knot targeted in several rotational CO lines⁽¹⁾
- Blueshift of -2800 km/s
- Broad lines ~400 km/s
- Physical conditions:
 - Large column density (10¹⁹ cm⁻²)
 - Dense (10⁵ to 10⁶ cm⁻³)
 - Warm (500-1000 K)

⁽¹⁾Wallström et al. 2013

Herschel PACS observations (2)

- Variation across the PACS footprint, both in CO (blue) and [OIII] 88 µm (red)
 - More variation in [OIII] as it traces preshock gas
 - CO emission to the west (left) may imply additional knot(s)

Spectra overlaid on a Spitzer/IRAC image of the CO vibrational emission

Reverse shock region

- At the shock front: increase in density and temperature
- Photons from shock front cause pre-shock
 PIR and post-shock PIR
 - Similar in temperature, but very different densities

Image from Docenko & Sunyaev 2010

PIR = photoionized region

CO knots in Cas A

- CO most likely in post-reverse-shock region, given the density, temperature, and broad lines
- Large column density of warm gas indicates an additional heating source
 - CO cooling time ~100 days
 - UV photons from the shock front and diffuse X-ray flux both insufficient
 - Most likely electron conduction from the surrounding plasma

Thermal conduction by electrons

- Thermal conduction into a dense ejecta knot balanced by evaporation flow from knot surface
 - Evaporation from knots into the hot gas determines the temperature and structure of SNRs⁽¹⁾
 - Thought to control the evolution of SNRs and their role in the large scale structure of the ISM⁽¹⁾
 - Thermal conduction is thought to be responsible for so-called mixed- morphology SNRs⁽²⁾
 - There is little direct evidence for the importance of thermal conduction in the survival of knots in SNRs

Follow-up

- No more Herschel, but still want to study
 - Characteristics of pre- and post-shock gas
 - Interrelationship of molecular and neutral/ionic atomic gas
 - The role of heat condution by electrons
 - The possible role of molecular knots in protecting SN dust

SOFIA Cycle 2 with FIFI-LS

- Cycle 2 SOFIA observations with FIFI-LS
 - Similar to Herschel
 PACS, for combination
 with previous data
 - Perfect for our broad lines (~400 km/s) and spatial variation
- I got to fly with SOFIA in April 2014!

The FIFI-LS proposal (1)

- Short project (<1h) to detect fine-structure lines of [OIII] 88 and 52 μm, and [OI] 63 μm
 - [OIII] 88 µm also observed with Herschel
 - Direct comparison with CO observations
 - Determine the characteristics and interrelationship of the molecular and neutral/ ionic atomic gas

The FIFI-LS proposal (2)

- Lines with various critical densities to disentangle contributions from
 - lower density pre-shock photoionized zone
 - higher density post-shock photoionized zone
 - E.g. [OI] 63 μm has critical density of 10⁵ cm⁻³, tracing the dense post-shock gas and may be a main coolant of this gas
- Velocity-resolved line profiles of the knot in different tracers
 - Velocity shifts and difference in line-width associated with pre- and post-shock gas

The FIFI-LS proposal (3)

- Address the following questions
 - What are the pre-shock and post-shock conditions in dense ejecta knots?
 - Are the observed variations in the mid-IR CO emission related to variations in the pre-shock density, column density or the presence of additional heating sources for the gas?
 - What is the importance of electron energy conduction for the heating of the gas?
 - How are dense knots in supernova ejecta processed by the reverse shock, and how well can they protect dust?

SOFIA cycle 2 observations

- Lines detected with short integration times
- Shown here are quick-look reduction results
 - Sufficient for
 Cycle 3 followup
 proposal

Telluric absorption calculated by RATRAN shown in green

SOFIA Cycle 3 with FIFI-LS

- Follow-up observations in Cycle 3
- Targeting the same lines at 3 bright CO positions in Cas A
- Total observing time ~15 hours

4.5 μm Spitzer map of ro-vibrational CO emission in Cas A (Rho et al. 2009) $$_{20}$$

Preliminary Cycle 3 result

- A few observing flights completed
 - More flight time scheduled in autumn
- As yet only quick-look reduction results
 - Chop/nod subtracted and reduced using spatial and spectral flat fields
 - Wavelength calibrated but not telluric corrected or flux calibrated

Dashed line marks the CO velocity

Summary

- Dense molecular knots in Cas A important for SNR impact and evolution
 - Study interplay with neutral/ ionic gas
- Waiting for complete, reduced Cycle 3 FIFI-LS data
 - Derive column densities, temperatures; look at spatial variation; disentangle pre- and post-shock contributions...

Color image of Cas A, with CO 2-0 overtone emission at 2.3 μ m in red, K-continuum in green and P β in blue (Rho et al. 2009)