

Probing the large-scale multiphase ISM of 30 Doradus in the LMC with SOFIA/FIFI LS

Mélanie Chevance (CEA Saclay/IRFU/AIM & Univ. Paris Diderot, France), Collaborators: Suzanne Madden, V. Lebouteiller, D.Cormier, N.Abel, L. Carlson, C. Fisher, F. Galliano, N. Geis, B. Godard, S. Hony, R. Indebetouw, A. Krabbe, J. Le Bourlot, M.-Y. Lee, F. Le Petit, L. Looney, M. Meixner, E Pellegrini, A. Poglitsch, W. Raab, E. Roueff, E. Sabbi, W. Vacca, H. Zinnecker

ROT

SOFIA teletalk - 28/09/2016

Outline

- 1. Context and motivation
- 2.30 Doradus, an extreme environment (Chevance et al. 2016) a. Herschel/PACS observations
 - b. Physical conditions and structure of the ISM
 - c. Constraining the "CO-dark" gas
- 3. The new SOFIA/FIFI LS observations (preliminary results)
- 4. Summary

Context: dwarf galaxies characteristics

- Dwarf galaxies are the most numerous galaxies in the local universe
- In the local universe, Z as low as 2% Z_☉ and wide range of star formation activities
- Hosting Super Star Clusters
- Dwarf galaxies have low metallicity -> chemically young, as primordial galaxies.

Local Universe dwarf galaxies are convenient labs to study the chemical evolution of galactic dust and gas properties

In some dwarf galaxies at low metallicity, we measure an important star formation rate but we hardly detect CO.

-> What are the relative distributions of H_2 and CO there ?

-> What are the relations between metallicity, ISM phases and structure, SF activity...?

-> How does star formation interact with the surrounding low metallicity PDR/ molecular gas ?

Modeling the ISM of galaxies

Diagnostic of various phases in the ISM

Zooming into 30 Doradus in the LMC

The Large Magellanic Cloud :

- 50 kpc
- Half solar metallicity

160μm HERITAGE Meixner+ 2010 Hα MCELS Smith+ [CII] BICE Mochizuki+ 1994. Rubin+ 2009

Zooming into 30 Doradus in the LMC

160μm HERITAGE Meixner+ 2010 Hα MCELS Smith+ [CII] BICE Mochizuki+ 1994. Rubin+ 2009 1' or 15 pc

R136

Fraction of L_{FIR} in PDRs

FIR_{PDR} / FIR_{total} Contours: FIR_{total}

PDR modeling : Isobaric model The Meudon PDR code (Le Petit+ 2006)

(adapted by Benjamin Godard)

<u>Model characteristics</u>: - Parallel slab geometry - Gas phase abundances measured in 30Dor (Pellegrini+2011) - Constant pressure <u>Key parameters</u>: - G_{UV}: intensity of the incident radiation field (in units of the Mathis field : 6.8e-14 erg/cm³)

p: pressure of the cloud
 (in cm⁻³ K)

- A_{v,total}: visual extinction

Maps of p and G_{UV}
from the observations 13

Results for $G_{\boldsymbol{U}\boldsymbol{V}}$ and \boldsymbol{p}

Emitted G_{stars} from the cluster

3.81e+05 3.39e+05 2.96e+05 2.54e+05 2.12e+05 1.69e+05 1.27e+05 8.46e+04 4.24e+04 Physical distance between stars and clouds : a 3D view of 30Dor

Physical distance to R136

 $G_{stars} = G_{UV} \times \frac{L^2}{d^2}$

Projected distance

Bolatto et al. 2013 (review)	2x10 ²⁰	LMC, Milky Way	
Israel 1997 (dust modeling)	8.4x10 ²¹	30Dor	235 pc
Schruba et al. 2012 (constant SFE)	4.6x10 ²¹	LMC	integrated
Roman-Duval et al. 2014 (dust modeling)	< 6x10 ²⁰	LMC	15 pc
Chevance et al. 2016b in prep	1 - 4x10 ²¹	30Dor	10 pc 19

FIFI LS observations June 28th-29th-30th and July 7th 2016

Observing mode: mapping, asymmetric chopping mode

	Line	Ionization potential (eV)	Critical density (cm ⁻³)	Observation time	Resolution (``)
Ionized gas	[OIII] 52µm	35.1	3500	≈ 1h	6
	[OIII] 88µm	35.1	510	≈ 1h	7.3
	[NIII] 57µm	29.6	3000	≈ 1.5h	6
	[CII] 158µm	11.3	2.8e3 [H], 50 [e]	≈ 1h	13.1
Neutral gas	[OI] 63µm	0	4.7e5	≈ 2.5h	6
	[OI] 145µm	0	9.5e4	≈ 5h	12.1 ²¹

FIFI LS observations: data reduction

Observations

Chop subtracted Nods combined Wavelength calibration Spatial calibration Telluric correction Flux calibration

Spectral cubes

Fit baseline with a polynomial of order 1 Fit line with a Gaussian (FWHM = spectral resolution) MC error estimation (on going)

Line intensities + Velocities 22

Comparison with PACS calibration

FIFI LS observations: [OI] 63µm

At the velocity of the LMC (≈ 270 km/s), [OI] 63μ m is close to a deep telluric absorption feature.

FIFI LS observations: [OI] 63µm

[OI] 63μm (total flux) Contours: PACS [OI] 63μm intensity

Current work and perspectives

- Decomposition of FIR (from the ionized gas or from the PDRs)
- PDR model at large scale with the FIFI LS data
- Impact of R136 on large scales (in particular on the CO-dark gas fraction)
- ALMA observations (PI Chevance) of CO(2-1) and (7-6) and [CI] (0.1pc resolution)
- Incorporate the ionic MIR lines (Cloudy model).
- Quantify the filling factor of the different phases.
- Other star-forming regions in the LMC and SMC

Current work and perspectives

- Model of the other regions in the Magellanic Clouds and Local Group galaxies.
 - •What are the effects of different excitation conditions and metallicity ?
- •What is the effect of mixing different environments in one beam ? • Calibration of the tracers of H_2 ([CII], [CI]) for unresolved studies.

