### Dust & Polarization in the Interstellar Medium

John Vaillancourt SOFIA Science Center Universities Space Research Association NASA Ames Research Center

B-G Andersson – SOFIA/USRA Darren Dowell – Caltech Roger Hildebrand – U. Chicago Giles Novak – Northwestern U. Brenda Matthews – Herzberg Inst. Jackie Davidson – U. Western Australia Martin Houde – U. Western Ontario

### Polarized Dust in the ISM



- Polarization: optical through mm wavelengths
  - Why is light polarized? → dust grains are aligned
  - Why, Where, and How are grains aligned with **B**-field?
- Polarization spectra observations (among others)
  - optical extinction (near-UV thru near-IR) in diffuse ISM
  - FIR/MM emission in dense clouds
- "Unified" models to explain polarized emission & absorption
- Extension to ...

USRA

- emission from Dark clouds and the diffuse ISM
- Longer wavelengths:  $\lambda \rightarrow 3 \text{ cm}, \nu \rightarrow 10 \text{ GHz}$





### Ferromagnetic alignment?



![](_page_4_Picture_2.jpeg)

October 16, 2012

USRA

![](_page_5_Figure_0.jpeg)

#### Step 1: Internal Alignment

internal relaxation / dissipation, via (nuclear) Barnett-effect

#### Step 2: Angular Momentum alignment

- paramag. dissipation, suprathermal rot'n & H<sub>2</sub> torques?
- radiative torques

Davis & Greenstein 1951 Jones & Spitzer 1967 Purcell 1979 Lazarian & Draine 1999 Hoang & Lazarian 2008

October 16, 2012

John Vaillancourt

6

### Radiative Alignment Torques (RAT)

![](_page_6_Picture_1.jpeg)

<u>F</u> is the alignment torque ( $\perp$  to J) <u>H</u> is the spin-up torque (|| to J)

**USRA** 

![](_page_6_Figure_3.jpeg)

Dolginov & Mytrophanov (1976) Draine & Weingartner (1996, 1997) Lazarian & Hoang (2007) Hoang & Lazarian (2008, 2009)

An asymmetrical grain has different right- and left- handed helicity components and therefore couples differently to right- and left-handed circularly polarized radiation components

- What are values  $\xi_0$  and  $J_0$  such that  $\langle F \rangle = \langle H \rangle = 0$ , and  $d \langle F \rangle / d\xi < 0$ ?
- Exact answer is a function of things like: radiation field, grain size, wavelength,  $\Psi$ , ...

![](_page_6_Picture_8.jpeg)

### **Tests of Alignment Theories**

![](_page_7_Picture_1.jpeg)

- Predictions of the Radiative Torque Model:
  - Alignment efficient up to  $A_V \sim 10$ , necessary for dense regions
    - compared to  $H_2$  torques which drop at lower  $A_V$  (i.e., no more free-H)
    - difference in  $T_{gas}$  and  $T_{dust}$  not necessary
  - Increased grain alignment efficiency with exposure to photons
    - Drop in polarization with opacity; "polarization holes"
    - Drop in polarization with distance from radiation source
  - Larger grains are better aligned than small grains
    - shift in polarization spectrum
  - Polarization dependent on angle between radiation direction and magnetic-field

USRA

### **Polarization Spectra**

![](_page_8_Picture_1.jpeg)

#### Near-optical wavelengths $(\lambda \sim a)$

![](_page_8_Figure_3.jpeg)

 large grains (traced by NIR) better aligned than small grains (traced by UV); e.g. Kim & Martin 1995

#### FIR–MM wavelengths ( $\lambda >>a$ )

![](_page_8_Figure_6.jpeg)

- multiple domains of grain temperature and polarization/ alignment; Hildebrand et al. 1999
- most recent: Vaillancourt & Matthews 2012

USRA

![](_page_9_Figure_0.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_11_Figure_0.jpeg)

![](_page_12_Figure_0.jpeg)

![](_page_13_Picture_0.jpeg)

# Comparing Hertz & SCUBA

![](_page_13_Picture_2.jpeg)

Hertz @ CSO 350 μm SCUBA-pol @ JCMT 850 μm

![](_page_13_Figure_4.jpeg)

October 16, 2012

![](_page_14_Picture_0.jpeg)

# Comparing Hertz & SCUBA

![](_page_14_Picture_2.jpeg)

### Hertz @ CSO 350 μm SCUBA-pol @ JCMT 850 μm

![](_page_14_Figure_4.jpeg)

![](_page_14_Figure_5.jpeg)

Data Cuts:  $P > 3\sigma_p$  and  $|\phi(850)-\phi(350)| < 10^\circ$ 

All 14 Objects: Median *P*-ratio =  $1.7 \pm 0.6$ 

October 16, 2012

# USRA Predicted Polariz'n Spectrum (1)

#### Dust emission from

- A single grain species at
- A single temperature (Hildebrand et al. 1999)

![](_page_15_Figure_5.jpeg)

Does not match Observations !

![](_page_16_Figure_0.jpeg)

![](_page_17_Figure_0.jpeg)

Grain alignment model in starless clouds:

- Nearly all grains exposed to same I.S. radiation field
- Large grains are more efficiently aligned
- Large grains cool more efficiently
  - $\Rightarrow$  Colder grains better aligned than warm grains

Draine & Fraisse 2009 (empirical ext. & pol.)

![](_page_18_Picture_0.jpeg)

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_21_Figure_0.jpeg)

- Observed cloud SEDs indicate wide dust temperature distribution
- Polarization  $\lambda$ -minimum constrains SED models
  - Function of components' temperature T, and spectral index  $\beta$
  - Independent of relative & total column densities

![](_page_22_Picture_0.jpeg)

- Correlation between Polarization and stellar locations
  - use P-spectrum (ratio) to eliminate change in spatial environment
- Existing SMM observations (20 arcsec) insufficient to resolve stars
- SHARP (10" at 350  $\mu$ m) or SCUBA-2 (7" @ 450  $\mu$ m) may resolve stars
- SOFIA (5" 10" @ 50 100  $\mu$ m), more sensitive to warm dust near stars

### **USRA** IR-Cirrus & High-Latitude Dust

![](_page_23_Picture_1.jpeg)

- All grains likely exposed to same environment
- Finkbeiner, Davis, & Schlegel (FDS99) high latitude dust
  T = 9.5 K, β = 1.7 (silicate ?)
  T = 16 K, β = 2.7 (graphite ?)
- If silicate is polarized and graphite unpolarized then  $T_C > T_{Si}$ ,  $p_C < p_{Si}$ ,  $\beta_C > \beta_{Si}$
- Predictions at

 $\lambda > 1 \text{ mm}$ (Hildebrand & Kirby 2004; Bethell et al. 2007; Draine & Fraisse 2009)

![](_page_23_Figure_7.jpeg)

![](_page_23_Figure_8.jpeg)

### USRA IR-Cirrus & High-Latitude Dust

![](_page_24_Picture_1.jpeg)

- All grains likely exposed to same environment
- Finkbeiner, Davis, & Schlegel (FDS99) high latitude dust
   T = 9.5 K, β = 1.7 (silicate ?)
  - $-T = 16 \text{ K}, \beta = 2.7 \text{ (graphite ?)}$
- If silicate is polarized and graphite unpolarized then  $T_C > T_{Si}$ ,  $p_C < p_{Si}$ ,  $\beta_C > \beta_{Si}$
- Predictions at

   λ > 1 mm
   (Hildebrand & Kirby 2004; Bethell et al. 2007; Draine & Fraisse 2009)

![](_page_24_Figure_7.jpeg)

IRAS 100  $\mu$ m, b = 27 deg.

![](_page_24_Figure_9.jpeg)

Δα (degrees)

![](_page_24_Figure_11.jpeg)

### Millimeter Polarimetry

**USRA** 

![](_page_25_Picture_1.jpeg)

BICEP Polarimetry at 96, 150, 210 GHz (3.1, 2.0, 1.4 mm) [Bierman et al. 2011]

![](_page_25_Figure_3.jpeg)

### Millimeter Polarimetry

**USRA** 

![](_page_26_Picture_1.jpeg)

BICEP Polarimetry at 96, 150, 210 GHz (3.1, 2.0, 1.4 mm) [Bierman et al. 2011]

![](_page_26_Figure_3.jpeg)

![](_page_27_Figure_0.jpeg)

# USRA The Future of Dust Polarimetry

![](_page_28_Figure_1.jpeg)

# USRA The Future of Dust Polarimetry

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

### Polarized Dust in the ISM

![](_page_30_Picture_1.jpeg)

- Optical dust-extinction and FIR dust-emission is polarized, grains are aligned with *B*-fields
- Both optical and FIR polarization-spectra are consistent with multiple domains of grain size, temperature, and polarization
- Radiative Torques are consistent with polarization observations in both the optical/NIR (extincted starlight polarization) and FIR/MM (polarized emission)
- Future Tests

USRA

- Better sampling of intensity & FIR-MM polarization spectrum
- Observations in diffuse ISM; different environment from Galactic clouds
- Look for correlation with stellar locations to test alignment models
- Future instruments: HAWC/SOFIA, SCUBA-2, Planck, ALMA