Characterizing Magnetized Turbulence in Molecular Clouds (and Galaxies)

> Martin Houde The University of Western Ontario

1

Collaborators:

Roger H. Hildebrand (U. of Chicago) John E. Vaillancourt (NASA Ames) Ramprasad Rao (ASIAA/SMA) Larry Kirby (U. of Chicago) Shadi Chitsazzadeh (Western/U. of Victoria) Jessie L. Dotson (NASA Ames) Maryam Tabeshian (Western)

M51 project

Andrew Fletcher (Newcastle U.) Rainer Beck (MPIfR) Anvar Shukurov (Newcastle U.)

Other SHARP (and HAWC+) team members:

Giles Novak (Northwestern U.) C. Darren Dowell (Caltech/NASA JPL)

Outline

- Dispersion of magnetic fields
 - Separation of turbulent and large-scale fields through structure functions
 - Example: the Chandrasekhar-Fermi technique
- Application/results
 - Single-dish OMC-1, CSO/SHARP
 - Turbulence correlation length
 - Turbulent/ordered field energy ratio (CF equation)
 - Interferometry SMA
 - Magnetized turbulent power spectrum
 - Ambipolar diffusion scale
 - Single-dish (Effelsberg) + Interferometry (VLA)
 - M51 Anisotropic turbulence

Polarization Maps - what are they good for?

SOFIA - 5 Dec. 2012

Vaillancourt et al., 2008, ApJ, 679, L25

Structure Functions

- Common for studying turbulence
 - Nice properties for power-law power spectra with stationary signals
- Have been used in astrophysics for some time
 - Molecular clouds
 - Dotson (1996, ApJ, 470, 566) \rightarrow M17 SW with KAO at 100 µm (polarization angles)
 - Falceta-Gonçalves et al. (2008, ApJ,) \rightarrow simulations
 - Radio Astronomy
 - Beck et al. (1999) \rightarrow Intensity maps (Stokes I, Q, and U)

Structure Functions

Given a polarization map

Angle $\Phi(\mathbf{r}) \rightarrow \mathbf{B}$ (plane of the sky)

The Angular Structure Function (stationarity and isotropy)

$$\left\langle \Delta \Phi^2(\ell) \right\rangle = \frac{1}{N(\ell)} \sum_{N(\ell) \text{ pairs}} \left[\Phi(\mathbf{r}) - \Phi(\mathbf{r} + \ell) \right]^2$$

If $\mathbf{B} = \mathbf{B}_{t} + \mathbf{B}_{0}$ (turbulent and ordered (large-scale) components)

$$\Rightarrow \left\langle \Delta \Phi^{2}(\ell) \right\rangle = \left\langle \Delta \Phi_{t}^{2}(\ell) \right\rangle + \left\langle \Delta \Phi_{0}^{2}(\ell) \right\rangle$$

with statistical independence.

$$\Rightarrow 1 - \left\langle \cos \left[\Delta \Phi(\ell) \right] \right\rangle \simeq \frac{\left\langle \Delta \Phi^2(\ell) \right\rangle}{2} \Leftarrow$$

6 SOFIA - 5 Dec. 2012

Structure Functions - Large-scale

SOFIA - 5 Dec. 2012

7

Structure Functions - Turbulence

Structure Functions - Turb.+large-scale

Example - Chandra-Fermi Equation

- turbulent

But the angular dispersion $\delta \Phi$ relative to the ordered field determined with polarization maps is

$$\boldsymbol{\delta} \boldsymbol{\Phi} \approx \left[\frac{\left\langle \boldsymbol{B}_{\mathrm{t}}^{2} \right\rangle}{\left\langle \boldsymbol{B}_{0}^{2} \right\rangle} \right]^{1/2}$$

or is it really the case?

Example - Chandra-Fermi Equation

Problems with the CF method

1. The models for \mathbf{B}_0 are imperfect and introduce more errors in the determination of $\delta \Phi$. This is solved with the structure function.

Moreover

- 2. Signal integration along the line of sight and across the telescope beam
 - $\langle \mathbf{B}_{t}^{2} \rangle$ is underestimated due to averaging process
 - \mathbf{B}_0 is therefore overestimated

OMC-1 with SHARP at 350 µm

OMC-1 / SHARP - Results

 $\delta \approx 7.3'' = 16 \text{ mpc}$ turbulent correlation length $N = \frac{\left(\delta^2 + 2W^2\right)\Delta'}{\sqrt{2\pi}\delta^3} \approx 21$ number of turbulent cells $\left\langle \overline{B}_t^2 \right\rangle = 1 \left\langle B_t^2 \right\rangle$

$$\frac{\langle \tau \rangle}{\left\langle \overline{B}_{0}^{2} \right\rangle} = \frac{1}{N} \frac{\langle \tau \rangle}{\left\langle B_{0}^{2} \right\rangle} \simeq 0.013$$

$$\langle B^{2} \rangle$$

 $\frac{\langle B_t \rangle}{\langle B_0^2 \rangle} \simeq 0.28$ turbulent/ordered field energy ratio

with Chandrasekhar-Fermi equation

$$B_0 \simeq \sqrt{4\pi\rho}\sigma(v) \left[\frac{\langle B_t^2 \rangle}{\langle B_0^2 \rangle}\right]^{-1/2} \simeq 760 \,\mu\text{G} \quad \text{plane of the sky}$$

with $n = 10^5 \text{ cm}^{-3}$, $A = 2.3$, and $\sigma(v) = 1.85 \text{ km s}^{-1}$
SOFIA - 5 Dec. 2012 Houde et al. 2009, ApJ, 706, 1504

14

Turbulent Power Spectrum

$$1 - \left\langle \cos\left[\Delta \Phi(\ell)\right] \right\rangle \simeq \frac{\left\langle \Delta \Phi^2(\ell) \right\rangle}{2}$$

but

$$\Rightarrow \left\langle \cos\left[\Delta \Phi(\ell)\right] \right\rangle \equiv \frac{\left\langle \overline{\mathbf{B}} \cdot \overline{\mathbf{B}}(\ell) \right\rangle}{\left\langle \overline{\mathbf{B}} \cdot \overline{\mathbf{B}}(0) \right\rangle} \Leftarrow$$

With a Fourier transform on the turbulent component $\frac{\langle \mathbf{\bar{B}} \cdot \mathbf{\bar{B}}(\ell) \rangle}{\langle \overline{B}^2 \rangle} \rightleftharpoons \frac{1}{\langle \overline{B}^2 \rangle} \|H(k_v)\|^2 R_t(k_v) [\equiv b^2(k_v)]$

We can determine the turbulent power spectrum $R_t(k_v)$ by deconvolution of the beam $H(k_v)$

Turbulent Power Spectrum - simulations

SOFIA - 5 Dec. 2012

Hennebelle et al. 2011, A&A, 528, 72

Turbulent Power Spectrum - simulations

Structure Function

Power Spectrum

Turbulent Power Spectrum - NGC 1333/SMA

850 µm dust emission (SMA)

B-vectors

beam: 1.6"x 1.0"

sampling: 0.2"

Turbulent Power Spectrum - Orion KL/SMA

B-vectors

beam: 2.6"x 1.7"

sampling: 0.25"

Ambipolar Diffusion - Orion KL/SMA

Magnetized Turbulence in Galaxies

M51 with Effelsberg (100m) + VLA

ordered + turbulent fields $\mathbf{B} = \mathbf{B}_0 + \mathbf{B}_t$

Fletcher et al. 2011 (MNRAS)

M51 - Polarized Flux

d = 7.6 Mpc 1" = 37 pc λ = 6.2 cm 4" beam 1" sampling

M51 - Structure Functions

Northeast

Southwest

	Northeast	Centre	Southwest
δ (pc)	• • •	67 ± 7	66 ± 8
N	•••	13 ± 3	14 ± 4
$\overline{B}_{\rm t}^2/\overline{B}^2$	0.028 ± 0.002	0.088 ± 0.026	0.072 ± 0.025
$B_{\rm t}^2/B_0^2$		1.28 ± 0.29	1.08 ± 0.29
$B_{\rm t}/B_0$	•••	1.13 ± 0.13	1.04 ± 0.14

From $\sigma_{\rm RM}$ analysis, Fletcher et al. get $\delta \approx 50 \, \text{pc}$ and $\frac{B_{\rm t}}{B_0} \approx 1.2 - 1.5$

SOFIA - 5 Dec. 2012

24 Houde et al. 2012

Consider all three regions at once → more vectors

25

SOFIA - 5 Dec. 2012

 $\delta_{\parallel} \simeq 98 \pm 5 \text{ pc}$ $\delta_{\perp} \simeq 54 \pm 3 \text{ pc}$ $\delta_{\parallel}/\delta_{\perp} \simeq 1.87 \pm 0.14$ $N \simeq 15 \pm 2$ $\overline{B}_{t}^{2}/\overline{B}_{0}^{2} \simeq 0.06 \pm 0.01$ $B_{\rm t}^2/B_0^2 \simeq 1.02 \pm 0.08$ $B_{\rm t}/B_{\rm 0} \simeq 1.01 \pm 0.04$

Houde et al. 2012

Summary

- Angular dispersion function allows the separation of the turbulent and ordered components of the magnetic field without assuming any model for the latter.
- We can also account for the signal integration process along the line of sight and across the telescope beam.
- With high-enough resolution data → determination of the magnetized turbulent power spectrum (e.g., correlation length, inertial range index, dissipation scale).
- But we need even higher resolution (ALMA) and "larger" single-dish observatories, as well as an increase in the number of "vectors" (SOFIA and CCAT) for anisotropy measurements.

Merci!

Canada Foundation for Innovation

Fondation canadienne pour l'innovation

18 78

Vestern

UNIVERSITY · CANADA

Canada Research Chairs Chaires de recherche du Canada

