Detection of OD with SOFIA

SOFIA Community Tele-Talk, December 2013

MPIfR/B.Parise (spectrum) , ESO/S, Guisard (background image) Press Release for GREAT on SOFIA http://www.mpifr-bonn.mpg.de/pressreleases/2012/3

Dr. Bérengère Parise

School of Physics and Astronomy, Cardiff University, Cardiff, UK

MPIfR, Bonn, Germany

in collaboration with F. Du, F.C. Liu, A. Belloche, R. Güsten, K. Menten and the SOFIA/GREAT team

Water formation in cold gas:

 $\begin{array}{l} \mathsf{O} + \mathsf{H}_3^+ \rightarrow \mathsf{O}\mathsf{H}^+ \\ \mathsf{O}^+ + \mathsf{H}_2 \rightarrow \mathsf{O}\mathsf{H}^+ \\ \mathsf{O}\mathsf{H}^+ + \mathsf{H}_2 \rightarrow \mathsf{H}_2\mathsf{O}^+ \\ \mathsf{H}_2\mathsf{O}^+ + \mathsf{H}_2 \rightarrow \mathsf{H}_3\mathsf{O}^+ \\ \mathsf{H}_3\mathsf{O}^+ + \mathsf{e}^- \rightarrow \mathsf{H}_2\mathsf{O} \end{array}$

Water formation in hot gas:

 $OH + H_2 \rightarrow H_2O + H$

Water formation on dust surfaces:

Cuppen et al. 2010

Grain surface chemistry formation of water (Cuppen et al. 2010) First detection of H₂O₂ in the interstellar medium with the APEX telescope, towards Oph A (Bergman, Parise, Liseau et al. 2011)

Relevance to the chemistry of water.

Grain surface chemistry formation of water (Cuppen et al. 2010) First detection of H₂O₂ in the interstellar medium with the APEX telescope, towards Oph A (Bergman, Parise, Liseau et al. 2011)

Relevance to the chemistry of water.

Astrochemical modeling of the abundance of H_2O_2 , O_2 , and other molecules predicted the abundance and detectability of a new molecule: HO_2 (**Du**, **Parise & Bergman, 2012**)

Grain surface chemistry formation of water (Cuppen et al. 2010) First detection of H₂O₂ in the interstellar medium with the APEX telescope, towards Oph A (Bergman, Parise, Liseau et al. 2011)

Relevance to the chemistry of water.

Astrochemical modeling of the abundance of H_2O_2 , O_2 , and other molecules predicted the abundance and detectability of a new molecule: HO_2 (**Du**, **Parise & Bergman, 2012**)

First detection of HO₂ with the APEX and IRAM telescopes and validation of the prediction of the astrochemical model (Parise, Bergman & Du 2012)

In this environment (~20K), the O₂ route to water is dominant

Bérengère Parise – School of Physics and Astronomy – Cardiff University

Follow-up search for H₂O₂ towards a sample of sources

Parise et al., Faraday Discussion 168, subm.

- Using the APEX telescope, search for H₂O₂ towards a sample of 10 sources, including low-mass protostars, IRDCs, massive YSOs, …
- No detection obtained, with upper limits on H_2O_2 abundance (much) lower than abundance in Oph A
- Similarity with the O₂ search
- Oph A seems to be a unique example of a source where conditions are about right (~ 20-30 K) for the O₂ route to be dominant in the formation of water. This particularity may result from external heating by the "S1" source.
- The abundance of H₂O₂ may thus be used to constrain the physical conditions during the source evolution.

Bérengère Parise – School of Physics and Astronomy – Cardiff University

Liu et al. 2011	Source	$\frac{\text{HDO}}{\text{H}_2\text{O}}$		$\frac{\text{HDCO}}{\text{H}_2\text{CO}}b$	$\frac{\text{CH}_2\text{DOH}}{\text{CH}_3\text{OH}}^b$
		Inner	outer (3σ)	_	_
	IRAS2A ^a	$\geq 0.01^c$	$0.07^{+0.11c}_{-0.06}$	$0.17\substack{+0.12\\-0.08}$	$0.62^{+0.71}_{-0.33}$
	IRAS 16293 ^d	0.03	≤ 0.002	0.15 ± 0.07	$0.37^{+0.38}_{-0.19}$
	Orion KL	0.02^{e}		0.14^{f}	0.04^{g}

Measuring the deuterium fractionation of water

- The deuterium content of water has been observed to be low compared to that of other molecules also formed on dust surfaces (e.g. CH₃OH) for over a decade now [e.g. Parise et al. 2005]
- The number of observational studies deriving HDO/H₂O has been booming with the Herschel Space Observatory, and all confirm the lower deuterium fractionation of water [e.g. Liu et al. 2011, Coutens et al. 2013]
- The HDO/H₂O directly measured in ices is also low 1%, 1%, Parise et al. 2003, Dartois et al. 2003)

Apparent problem for astrochemical models, but new generation of models propose different explanations (Cazaux et al. 2011, Taquet et al 2011, Dujet al. in prep.)

Add nore observational constraints: sparshift of

Search for OD in the ISM

Previous attempts:

- Allen et al. 1974 at 310 MHz towards Galactic Center
- OD recently detected towards comet C/2002 T7 (LINEAR) via coaddition of 30 lines of UV fluorescence spectrum (Hutsemekers et al. 2008)
 OD/OH ~ 3.5 10⁻⁴, result of photodissociation of HDO and H₂O
- Our search: ground-state transition with SOFIA

Observation with SOFIA

Target: IRAS16293-2422, a low-mass protostar in the ρ Oph complex, where high levels of deuterium fractionation have been observed (up to the detection of CD₃OH, Parise et al. 2004)

OD ground state transition at 1391.5 GHz

Column density of OD?

Molecular line	Fit type	$\int_{(K km s^{-1})} T_{\rm mb} dv$	$\frac{FWHM}{(\mathrm{km}\mathrm{s}^{-1})}$	$v_{\rm lsr}$ (km s ⁻¹)
HDO $1_{1,1} - 0_{0,0}$	two-Gauss	$+4.4 \pm 0.6$	5.9 ± 1.0	4.5 ± 0.3
		-2.4 ± 0.3	1.0 ± 0.1	4.2 ± 0.1
OD $5/2 \rightarrow 3/2, -1 \rightarrow +1$	one-Gauss	-4.1 ± 0.5	2.9 ± 0.3	-
OD $5/2 \rightarrow 3/2, -1 \rightarrow +1$	hfs	_	1.3 ± 0.6	4.2 ± 0.2

$T_{\rm ex}$ (K)	$N_{\rm OD}~({\rm cm}^{-2})$	$N_{\rm HDO}~({\rm cm}^{-2})$	OD/HDO
2.7	$(3.5 \pm 1.5) \times 10^{13}$	$(6.0 \pm 1.5) \times 10^{11}$	60 ± 30
5.0	$(5.0 \pm 2.0) \times 10^{13}$	$(1.2 \pm 0.3) \times 10^{12}$	45 ± 20
10.0	$(1.0 \pm 0.3) \times 10^{14}$	$(4.0 \pm 1.0) \times 10^{12}$	27 ± 10

OD/HDO ~ 17 - 90

Preliminary astrochemical modelling

OH/H₂O ratio predicted by the model from Du, Parise & Bergman (2012)

Bérengère Parise – School of Physics and Astronomy – Cardiff University

More detailed astrochemical modelling including deuterium

• Derive directly the OD/OH ratio observationally

 \rightarrow Observation of ¹⁸OH with SOFIA (Cycle I proposal rated A, not observed)

- Observation of OD towards other star-forming regions (tracing other physical conditions and history)
 - \rightarrow OD detected towards SgrB2 (Parise et al. in prep)
 - + Cycle I accepted SOFIA proposal by Menten et al.