Far-infrared spectroscopy of a globule in Cygnus X

Nicola Schneider, Markus Röllig

I. Physik. Institut, University of Cologne,

Germany

SOFIA teletalk 10th november 2021

Introduction

Stellar feedback (radiation, winds) produces various features in the interface region between the molecular cloud and the HII region:

Herschel (HOBYS)

'Pillars of creation' in M16

Introduction

pillars, globules, EGGs,

Not only pillars, a full zoo of features

(Schneps et al. 1980; Hester et al. 1996; White et al. 1997; Pound 1998; Pound et al. 2003; Bally & Reipurth 2003;....).

Herschel image (70, 160, 250 µm) of Cygnus X (HOBYS)

Hennemann et al. 2012, Schneider et al. 2016

Pillars

column-shaped, attachted to the molecular cloud, ~0.5 to a few pc

Globules

free-floating, head-tail (tadpole) structure, ~0.5 to a few pc

Proplyds

On smaller scales: EGGs (evaporating gaseous globules), teardrop globules, cometary globules, globulettes,

Classification in Cygnus X

(Schneider et al. 2016)

Table A.1. Physical properties of pillars, globules, EGGS, proplyd-like, and condensations.

- Identification from 70 µm imaging
- Physical properties from dust column density and temperature maps

Globules

- dense <n> ~ 1.2 10⁴ cm⁻³
- massive $<M> \sim 470 M_{sun}$

Pillars

- less dense <n> ~ 0.5 10⁴ cm⁻³
- massive < M> \sim 534 _{Msun}
- Pillars and globules have the longest photoevaporation lifetimes (a few 10⁶ yr), all other features <10⁶ yr.
- t_{ff} (free-fall time) a few 10⁵ yr

	L102 am -21	TAG 1	1103	CPC1	11/1	TW1	Incl	[ma same]	TM /m 21	(Fiux)
	[10- cm -]	[M_0]	[10 cm -]	[K]	(K)	[K]	(pc)	[pc×pc]	[Ma/pc-]	[GO]
The second	(1)	(2)	(3)	(4)	(5)	(0)	(/)	(8)	(9)	(10)
Pillars	21.0	1000	20	17.0		10.7	1.17	200 040	200	100
1	21.0	1080	2.9	17.3	14.8	18.7	1.17	2.80 × 0.40	390	198
2	11.5	282	3.1	17.7	17.4	18.2	0.05	1.22 × 0.31	213	14/
3	10.1	8.5	8.8	17.1	10.7	17.3	0.30	0.61 × 0.17	298	1//
4	11.5	50	0.9	17.3	16.8	17.4	0.27	0.63×0.13	213	122
5	17.2	156	7.1	17.1	16.2	17.4	0.39	0.87×0.18	319	175
0	21.0	1403	3.2	18.0	17.3	20.2	1.07	2.38×0.43	390	295
7	7.9	86	3.0	19.1	18.1	20.1	0.43	0.88×0.24	147	191
Mean	15.2 ± 1.9	534 ± 263	5.0 ± 0.9	17.7 ± 0.3	16.8 ± 0.4	18.5 ± 0.5	0.61 ± 0.14	CORA I AND CARD IS	281 ± 35	186 ± 21
Globuk	s									
1	14.2	238	4.3	19.7	17.2	26.3	0.54		263	549
2	22.1	108	23.8	16.1	15.7	16.5	0.29		410	156
3	30.6	180	15.8	17.5	15.6	20.2	0.31		568	294
4	15.0	1356	2.0	19.7	18.6	23.7	1.24		279	428
Mean	20.5 ± 3.8	470 ± 296	12 ± 5	18.3 ± 0.9	16.8 ± 0.7	21.7 ± 2.1	0.60 ± 0.22		380 ± 71	357 ± 85
EGGs										
1	12.9	10.8	18.6	17.1			0.11		239	137
2	11.7	5.9	22.8	17.0			0.08		217	113
3	13.5	38.6	10.1	17.3			0.22		251	153
4	13.5	4.5	34.4	16.9			0.06		251	137
5	12.8	6.4	25.0	17.1			0.08		238	127
Mean	12.9 ± 0.3	13 ± 6	22 ± 4	17.1 ± 0.1			0.11 ± 0.03		239 ± 6	133 ± 7
Proplyd	l-like	7.01038	3.253.003	1000000			107.25753	THE CHEW LOSS MORE	0.0000000	9000001
1	10.9	11.0	13.5	17.1			0.12	0.12×0.08	202	160
2	10.5	5.3	20.4	17.8			0.08	0.31×0.11	194	211
3	16.2	48.8	11.7	17.8			0.22	0.55×0.29	300	394
4	13.1	24.2	12.3	17.6			0.17	0.49×0.16	243	315
5	17.4	69.9	10.9	17.2			0.26	0.36×0.20	322	340
5a	13.8	37.0	10.6	17.2			0.21		256	192
5b	12.7	23.5	12.0	17.1			0.17		236	157
5c	12.7	17.0	14.1	17.0			0.15		235	171
5d	12.3	12.4	16.0	17.2			0.12		229	179
6	21.1	84.9	13.2	16.9			0.26	0.37×0.13	392	296
7	12.8	42.8	8.8	18.3			0.24	0.37×0.11	237	349
8	13.7	50.5	9.0	17.2			0.25	0.21×0.07	254	314
9	10.5	3.5	26.8	17.4			0.06	0.09×0.06	195	138
10	14.6	26.9	13.7	17.7			0.17	0.40×0.13	270	255
11	26.0	34 9	28.9	17.7			0.15	C701701.000	483	304
12	10.2	85	147	17.3			0.11		189	128
13	11.8	119	154	17.4			0.12		219	144
Mean	141+10	31+6	15+1	17.4 + 0.09			0.17 ± 0.02		262 + 19	243 + 23
Conder	sations									
1	32.6	21.9	53.5	14.4			0.10		605	110
2	26.3	88	67.0	15.1			0.06		488	123
3	29.8	49.8	29.4	153			0.16		552	122
4	32.4	21.7	53.1	15.5			0.10		601	168
5	42.4	21.3	827	15.1			0.08		787	156
6	50 3	69.5	70.9	15.1			0.14		1100	272
7	25.0	30.0	30.0	15.3			0.14		465	131
	2.3.0	20.0	0.00	13.5			W.1-4		405	1.51

Notes. The tast line of each section gives the average (mean) values for each class of sources in bold. (1) Average column density derived within the 70 μ m contour level. (2) Mass derived from column density map within the contours of the 70 μ m data. (3) Average density from the mass M, assuming a spherical shape with an equivalent radius r. (4) Average temperature (average across the area covered by the 70 μ m contour). (5) And (6) Minimum and maximum temperature. (7) Equivalent radius ($r = \sqrt{area/\pi}$), deconvolved with the beam (6" for 70 μ m that corresponds to 0.04 pc for a distance of 1.4 kpc). (8) Length and width for pillars (this study) and proptyd-like (sizes from Wright et al. 2012). (9) Surface density. (10) Average UV-flux in units of Habing field.

Theory and Simulations

Classical view

1. Radiation-driven implosion, i.e. large-scale compression of an expanding HII region on a molecular cloud surface creates **pillars** that then evolve into **globules** *(Bertoldi & McKee 1990; Lefoch & Lazareff 1994; Williams et al. 2001,)*.

2. Hydrodynamic instabilities such as **Rayleigh-Taylor**, i.e. an instability of an interface between two fluids of different densities (e.g. Mizuta et al. 2006).

Turbulence and Geometry

Dense, primordial filaments are shaped by UV radiation into the form of pillars that then fragment under the influence of radiation into globules (*Dale et al. 2014*).

Turbulent density structure of molecular clouds can lead to local **curvatures** of the dense shell formed by the ionization compression, which develop into pillars.

(e.g. Gritschneder et al. 2009; Tremblin et al. 2011, 2012a,b)

Simulations from Tremblin et al. 2012

Globule formation in simulations

Predictions from numerical simulations (*Tremblin et al. 2011, 2012a,2012b, 2013*)

Globules emerge from the radiation impacted, turbulent molecular cloud surface, they are not 'eroded' pillars.

Turbulent ram pressure of cold molecular gas must be higher than *ionization pressure.*

The globule does not need to have the same velocity as the ionizing gas or the molecular cloud.

The **velocity of a globule** is the signature of the initial turbulence.

Walch et al. 2013:

Low fractal dimension: the border of the HII region is dominated by **shell-like structures** that break up into a a few massive high-density clumps.

Column density at different time steps

High fractal dimension: the border of the HII region is dominated by pillars and globules.

The Globule in Cygnus X

Spitzer Cygnus X legacy (Hora et al.)

The globule in CII: excitation external ? internal? both?

CII 158 µm SOFIA line integrated (0-15 km/s) intensity (early science Schneider et al. 2012)

CII contours on 2MASS J, H, K image

2012: 'CII and ¹²CO 11-10 emission from internal photodissociation regions (PDRs).'

-> need of careful PDR modelling to check !

(Herschel OT project PACS/SPIRE/HIFI in Cygnus, Rosette, M16)

arga sat of	Instrument	Species	λ	v	Δv	Θ		
Large Set Or		county intes			[µm]	[GHz]	[km/s]	["]
			Herschel s	pectroscopy		1000 5		10.0
	a a la a l /	$ \nabla $ into exact and $(0, 4\nabla $	HIFI	[CII]	157.7	1900.5	0.7	12.2
CII 158 µm Her	scnel/	HIFT line integrated (U-15 km/s)	PACS	[CII]	157.7	1900.5	20-5	~11
intonsity			PACS	[O1]	145.5	2060.1	10 -	~10
mensity		50 0 -50	PACS	[01]	63.2	4744.8	-	~9.5
			PACS	[N II]	121.9	2459.3	-	~9.4
			PACS	¹² CO 16→15	162.8	1841.4	_	~11.5
▲ 'star A'			PACS	¹² CO 14→13	186.0	1611.8	8 <u>2</u> 8	~12.5
			PACS	$^{12}CO 13 \rightarrow 12$	200.3	1496.9	020	~13
Binary one	,, 00		SPIRE	[C1]	370.4	809.3	1973	34.8
Llambia Da atan),6(SPIRE	[C1]	609.1	492.2	3573	37.2
Herbig Be star	0.0		SPIRE	[NII]	205.2	1461.1	(8 7 5)	16.9
	4		SPIRE	$^{12}CO 13 \rightarrow 12$	200.3	1496.9	1000	16.8
└── 'star B'			SPIRE	¹² CO 12→11	216.9	1382.0	20-0	17.2
			SPIRE	$^{12}CO 11 \rightarrow 10$	236.6	1267.0	10 -	17.6
		[K km/s]	SPIRE	¹² CO 10→9	260.2	1152.0	-	17.7
B0.5 to B1.5	ŏ		SPIRE	¹² CO 9→8	289.1	1036.9	-	19.2
	8,0		SPIRE	¹² CO 8→7	325.2	921.8	-	36.8
fatar O'	0.0		SPIRE	¹² CO 7→6	371.7	806.7	00 <u>0</u> 00	34.8
	(40		SPIRE	¹² CO 6→5	433.6	691.5	03236	29.4
•	00		SPIRE	$^{12}CO \rightarrow 4$	520.3	576.3	100	32.6
Binary, one late	(20		SPIRE	$^{12}CO 4 \rightarrow 3$	650.3	461.0	253	40.4
)ec		SPIRE	¹³ CO 9→8	302.4	988.8	100	36.1
O or early B			SPIRE	¹³ CO 8→7	340.2	881.3	(1 75)	36.1
	00,,		SPIRE	¹³ CO /→6	388.7	111.2	-	34.0
	20.		SPIRE	¹³ CO 6→5	453.5	661.1	- C	30.0
	40		SPIRE	¹⁵ CO 5→4	544.2	550.9	() 	32.9
+ vouna cluster			Herschel p	hotometry	70	1000		60
· young cluster			PACS	continuum	10	4283	00206	6.0
with 30-40 stars			PACS	continuum	160	18/4	0000	11.4
			SPIRE	continuum	250	1199	1000	17.8
	,00		SPIRE	continuum	500	857	1775	25.0
	,90		SPIRE	continuum	500	600	855	35.7
(Diupvik, Comeron,	40°		SOFIA	10.11	15774	1000 5	0.02	15.1
Schneider 2017)			GREAT		157.74	1900.5	0.23	15.1
Schneider 2017)			GREAT	¹² CO 11→10	230.01	120/.0	0.69	22.5
			UPGREAT	120016 15	03.18	4/44.8	0.25	0.1
			UPOREAT	~CO 16→15	102.81	1841.4	0.64	15.5
	2	$0^{h}33^{m}55^{s}$ 50^{s} 45^{s}	FCKAU	1300 1 0	0700.4	110.0	0.047	15
		RA(2000)	SEQUOIA	CO I→0	2050.1	110.2	0.007	40
		Schneider, Röllig et al. 2021	SEQUUIA	(52→1	3039.1	98.0	0.075	48
			JUMI	12002 0	060.0	245 0	0.40	12
			HAKP	"CO 3→2	809.0	545.8	0.42	

Large set of FIR cooling lines

SPIRE velocity unresolved lines from the Globule head position

Instrument	Species	λ	V	Δv	Θ
	A COMPANY AND A COMPANY AND A	[µm]	[GHz]	[km/s]	["]
Herschel s	pectroscopy				
HIFI	[CII]	157.7	1900.5	0.7	12.2
PACS	[CII]	157.7	1900.5	-	~11
PACS	[O1]	145.5	2060.1		~10
PACS	[O1]	63.2	4744.8	-	~9.5
PACS	[NII]	121.9	2459.3	(a <u>-</u> 2)	~9.4
PACS	12CO 16→15	162.8	1841.4	120	~11.5
PACS	12CO 14→13	186.0	1611.8	87 <u>2</u> 8	~12.5
PACS	¹² CO 13→12	200.3	1496.9	81 <u>2</u> 78	~13
SPIRE	[C1]	370.4	809.3	100	34.8
SPIRE	[C1]	609.1	492.2	275	37.2
SPIRE	[NII]	205.2	1461.1	-	16.9
SPIRE	¹² CO 13→12	200.3	1496.9		16.8
SPIRE	12CO 12→11	216.9	1382.0	-	17.2
SPIRE	12CO 11→10	236.6	1267.0	-	17.6
SPIRE	12CO 10→9	260.2	1152.0	5 - 2	17.7
SPIRE	¹² CO 9→8	289.1	1036.9	88 <u>-</u> 21	19.2
SPIRE	¹² CO 8→7	325.2	921.8	9. <u>4</u> 7)	36.8
SPIRE	¹² CO 7→6	371.7	806.7	87 <u>2</u> 78	34.8
SPIRE	¹² CO 6→5	433.6	691.5	8 <u>2</u> 8	29.4
SPIRE	¹² CO 5→4	520.3	576.3	100	32.6
SPIRE	¹² CO 4→3	650.3	461.0	253	40.4
SPIRE	¹³ CO 9→8	302.4	988.8		36.1
SPIRE	¹³ CO 8→7	340.2	881.3	51 7 5	36.1
SPIRE	¹³ CO 7→6	388.7	771.2	-	34.0
SPIRE	¹³ CO 6→5	453.5	661.1	19 4 9	30.0
SPIRE	¹³ CO 5→4	544.2	550.9	8 . _2	32.9
Herschel p	hotometry				
PACS	continuum	70	4283	8 <u>12</u> 78	6.0
PACS	continuum	160	1874	528	11.4
SPIRE	continuum	250	1199	070	17.8
SPIRE	continuum	350	857	175	25.0
SPIRE	continuum	500	600	51 7 51	35.7
SOFIA	100.00.00	0.0000.000.000000000	20000000000000000000000000000000000000	000000000	00/05/20070
GREAT	[C11]	157.74	1900.5	0.23	15.1
GREAT	¹² CO 11→10	236.61	1267.0	0.69	22.5
upGREAT	[O1]	63.18	4744.8	0.25	6.1
upGREAT	¹² CO 16→15	162.81	1841.4	0.64	15.3
FCRAO					
SEQUOIA	¹³ CO 1→0	2720.4	110.2	0.067	45
SEQUOIA	CS 2→1	3059.1	98.0	0.075	48
JCMT					10
HARP	¹² CO 3→2	869.0	345.8	0.42	13

The globule is rotating

see SOFIA CII map of globule head, Schneider et al. (2012)

CII integrated intensity

Solid body rotation?

 $M = (v^2 r) / G$ Minimum mass needed to support rotation

Globule head: v ~ 0.2 km/s , r ~ 0.1-0.2 pc

-> M ~ 100 M_{sun}

Mass from dust column density ~ 170 M_{sun}

Did the globule get a 'kick' (= momentum) when it detached from the molecular cloud?

Magnetic fields (helix model, Gahm et al. 2006)?

Do stellar feedback effects (radiation, winds) provoke the rotation?

A CII ,outflow'

40°09'30"

40°09'00"

40°08'30"

40°08'00"

A CII outflow driven by a Herbig Be star?

CII 'outflow' in channel maps, no promiment OI 63 µm wings -> no shocks? But prominent H₂ emission..

YSO outflow driven by the stellar wind or magneto-centrifugally star-disk interaction? (Cauley & Johns-Krull 2014; Moura et al. 2020; Rodriguez et al. 2014)

'Outflowing gas' from ablation of the photodissociation region of the cavity walls? (see S106, Schneider et al. 2018)

PDR modelling – Complexity

Geometry

plane parallel slab sphere (new parameter: mass) circular paraboloid (outflow) 3-D, clumpy, fractal

Radiation field (int & ext)

isotropic and/or directed/inclined spectral shape of FUV field physics and chemistry: $f(\lambda)$ detailed photon cross-section line-overlap, scattering,...

Dust content ("terra incognita")

dust composition, size distribution ? very small grains, PAHs, PE efficiency, charge exchange grain surface: sticking, E_{des}, ...

Chemistry

Large nonlinear chemical networks ~10-20% reaction rates known coupling to heating & cooling & RT ice & surface & gas chemistry coupling to FUV & CR & XR state-to-state reaction rates **Energetics / Thermodynamics**

couples to FUV RT & dust & chemistry full treatment of H₂,HD,CO,H₂O,.... detailed internal RT vs. approx. chemical heating & cooling multi-stability solutions?

Stationarity

stationary vs. time-dep solution initial conditions? rate uncertainties more important UV field, geometry, pressure/density

Numerics

non-linear coupling of geometry RT & energetics & chemistry scaling with chemistry: $N^{3.5}$ interpolation \rightarrow uncertainties n-dim global root search multiple solutions !?

PDR modelling.....

- 1-D, spherical geometry
 - power-law density profile
 - isotropic illumination
- self-consistent solution of energy balance, chemistry and radiative transfer
- self-shielding of H₂, CO
- detailed dust treatment: $I_{UV}(\lambda)$, T_{dust} , dn/da,...
- 3-phase chemistry (gas ice surface)
- Full H₂ ro-vib treatment
- Non-LTE RT: clump emission
- clumpy cloud composition
 - stochastic clump ensemble
 - KOSMA-т 3D (Andree-Labsch et al. 2017)

COMING SOON

- Online database and Python interface
 - PDR Toolbox pdrtpy <u>http://dustem.astro.umd.edu/</u>
 - InterStellar Medium DataBase (ISMDB) <u>https://ism.obspm.fr</u>

- 1-D, spherical geometry
 - power-law density profile
 - isotropic illumination
- self-consistent solution of energy balance, chemistry and radiative transfer
- self-shielding of H₂, CO
- detailed dust treatment: $I_{UV}(\lambda)$, T_{dust} , dn/da,
- 3-phase chemistry (gas ice surface)
- Full H₂ ro-vib treatment
- Non-LTE RT: clump emission
- clumpy cloud composition
 - stochastic clump ensemble
 - KOSMA-т 3D (Andree-Labsch et al. 2017)

COMING SOON

- Online database and Python interface
 - PDR Toolbox pdrtpy <u>http://dustem.astro.umd.edu/</u>
 - InterStellar Medium DataBase (ISMDB) <u>https://ism.obspm.fr</u>

- 1-D, spherical geometry
 - power-law density profile
 - isotropic illumination
- self-consistent solution of energy balance, chemistry and radiative transfer
- self-shielding of H₂, CO
- detailed dust treatment: $I_{UV}(\lambda)$, T_{dust} , dn/da,.
- 3-phase chemistry (gas ice surface)
- Full H₂ ro-vib treatment
- Non-LTE RT: clump emission
- clumpy cloud composition
 - stochastic clump ensemble
 - KOSMA-т 3D (Andree-Labsch et al. 2017)

COMING SOON

- Online database and Python interface
 - PDR Toolbox pdrtpy <u>http://dustem.astro.umd.edu/</u>
 - InterStellar Medium DataBase (ISMDB) <u>https://ism.obspm.fr</u>

Background Rosette (*Herschel*, Motte et al. 2010, Schneider et al. 2010)

- 1-D, spherical geometry
 - power-law density profile
 - isotropic illumination
- self-consistent solution of energy balance, chemistry and radiative transfer
- self-shielding of H₂, CO
- detailed dust treatment: $I_{UV}(\lambda)$, T_{dust} , dn/da,...
- 3-phase chemistry (gas ice surface)
- Full H₂ ro-vib treatment
- Non-LTE RT: clump emission
- clumpy cloud composition
 - stochastic clump ensemble
 - KOSMA-т 3D (Andree-Labsch et al. 2017)

COMING SOON

- Online database and Python interface
 - PDR Toolbox pdrtpy <u>http://dustem.astro.umd.edu/</u>
 - InterStellar Medium DataBase (ISMDB) <u>https://ism.obspm.fr</u>

PDR modelling of the head

PDR modelling of the head

CO-SLED: spectral line energy distribution

2-component model gives best fit

PDR modelling of the head

PDR modelling of the head

27

PDR modelling of the head

PDR modelling of the head

Fine-structure line emission

PDR modelling of the head

• 😞

OI 63µm model too strong

Explained by foreground absorption.

Observed everywhere

Fine-structure line emission

[OI]_{63 µm}

 $[OI]_{145\,\mu m}$

8

PDR modelling of the head

PDR modelling of the head

Intensity ratios for all lines @ different spatial resolution Included in fit!

PDR modelling of the head

We need the **external** AND the **internal** UV/PDR to explain the emission of the head!

Non-clumpy: mass = 160 M_{sun} , n = 10⁴ cm⁻³, beam-filling = 0.9 Clumpy: mass = 1.1 M_{sun} , n = 1.8 10⁶ cm⁻³

2-component PDR model explains emission

Non-clumpy component [CII] 158 μm [OI] 63 & 145 μm

Clumpy component Mid/high-J CO

2-component PDR model explains emission

Non-clumpy component [CII] 158 μm [OI] 63 & 145 μm

Clumpy component Mid/high-J CO HII region

2-component PDR model explains emission

Non-clumpy component [CII] 158 μm [OI] 63 & 145 μm

Clumpy component Mid/high-J CO + clumpy internal PDR

Non-clumpy component [CII] 158 μm [OI] 63 & 145 μm

Clumpy component Mid/high-J CO

+ molecular cloud

2-component PDR model explains emission

Non-clumpy component [CII] 158 μm [OI] 63 & 145 μm

Clumpy component Mid/high-J CO

+ external PDR

2-component PDR model explains emission

External PDR: Illuminated by Cyg OB2 Non-clumpy component [CII] 158 µm [OI] 63 & 145 µm

Internal PDR Illuminated by internal stars Clumpy component Mid/high-J CO

PDR modelling of the tail

A physical model of the globule

The tail emission can be explained with a single non-clumpy PDR.

Summary

- The globule IRAS 20319+3958 is a free-floating globule with a head-tail structure with **embedded high-mass star-formation**, i.e. three star systems with an Herbig Be star and an IR cluster.
- The Herbig Be star is associated with an outflow in CII. It is unclear if this is a YSO outflow (star-disk interaction) or dynamics in the HII region/molecular cloud interface.
- The globule shows observational signatures of rotation.
- Two positions (one in the head and one in the tail) were observed in a number of PDR cooling lines and modelled with the KOSMA-tau model:
 - -> The [CII] 158 μm, [OI] 63 and [OI] 145 μm lines can be explained by external illumination by Cyg OB2 on a non-clumpy PDR.
 - -> The mid/high-J CO can be explained by an **internal, clumpy PDR** excited by the massive embedded stars.

Outlook

More sources to be studied in FEEDBACK

http://feedback.astro.und.edu

Visible from Palmdale/New Zealand/both locations

- SOFIA legacy program (PIs N. Schneider, A. Tielens) to map CII at 158 µm and OI at 63 µm using upGREAT in 11 Galactic star-forming regions.
- **96 h** observing time, observations started in 2019.
- Objective is to study stellar feedback from massive stars on the interstellar medium (ISM), i.e. the dynamic evolution of molecular clouds, heating- and cooling processes, and triggering of star-formation.

Source	RA(2000)	Dec(2000)	d	Vlsr	SF activity	Morphology	Area
	[h m s]	[o ' "]	kpc	km/s	SpT & cluster		arcmin
RCW36	08 59 00	-43 48 49	0.7	5	O8, B-cluster	Bipolar	~15x15
RCW79	13 40 18	-61 44 12	4.3	-50	2 O4, 10 late O	Bubble	~20x20
RCW49	17 12 18	-38 27 43	4.2	0	2WR, 12 early O, compact cluster	Bubble	~20x30
RCW120	17 12 18	-38 27 43	1.3	-10	1 07	Bubble	~15x15
NGC6334	17 19 03	-35 48 56	1.35	-5	mini starburst	Ridge	~20x35
M17	18 18 31	-16 34 52	1.9	22	2 O4 10 late O	Ridge	~20x30
M16	18 18 56	-13 48 26	2.0	25	O4, 10 late O	Pillars	~20x30
W40	18 30 15	-02 44 31	0.26	5	1 O, 2 B	Bipolar	~20x30
W43	18 46 54	-02 14 11	5.5	100	mini starburst	Ridge	~20x30
Cygnus X	20 37 59	41 45 09	1.4	-3	Nearby Cygnus OB 2: 3 WR,~50 O	Ridge	~20x35
NGC7538	23 13 40	61 30 00	2.8	-55	03	Bubble	~15x15