# The Prebiotic Potential and Molecular Diversity of Space Environments

**Past Projects and Future Possibilities with SOFIA** 

Duncan V. Mifsud<sup>1,2</sup> and Sergio loppolo<sup>3</sup>

<sup>1</sup> Centre for Astrophysics and Planetary Science, University of Kent, United Kingdom
<sup>2</sup> Atomic and Molecular Physics Laboratory, Atomki Institute for Nuclear Research, Hungary
<sup>3</sup> School of Electronic Engineering and Computer Science, Queen Mary University of London, United Kingdom

January 19, 2022

#### The Early Years of Astrochemistry (1922-1942)







Feldman, *Can. J. Phys.* 79, 89.

#### Modern Astrochemistry (1963 – Present) *Molecules are Everywhere!*

|                     |                  |          |                  |                    |                  |            |                    |                                   |                                   | N N                                |                                         |                                     |                                      |                                    |                                  |                                                   |              |
|---------------------|------------------|----------|------------------|--------------------|------------------|------------|--------------------|-----------------------------------|-----------------------------------|------------------------------------|-----------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|----------------------------------|---------------------------------------------------|--------------|
| 2 Atoms             |                  | 3 Atoms  |                  | 4 Atoms            |                  | 5 Atoms    |                    | 6 Atoms                           | 7 Atoms                           | 8 Atoms                            | 9 Atoms                                 | 10 Atoms                            | 11 Atoms                             | 12 Atoms                           | 13 Atoms                         | PAHs                                              | Fullerenes   |
| CH                  | NH               | $H_2O$   | MgCN             | NH <sub>3</sub>    | SiC <sub>3</sub> | $HC_3N$    | $C_4H^-$           | CH <sub>3</sub> OH                | CH <sub>3</sub> CHO               | HCOOCH <sub>3</sub>                | CH <sub>3</sub> OCH <sub>3</sub>        | CH <sub>3</sub> COCH <sub>3</sub>   | HC <sub>9</sub> N                    | $C_6H_6$                           | C <sub>6</sub> H <sub>5</sub> CN | $1\text{-}\mathrm{C}_{10}\mathrm{H}_7\mathrm{CN}$ | C60          |
| CN                  | SiN              | $HCO^+$  | $H_2^+$          | $H_2CO$            | $CH_3$           | HCOOH      | CNCHO              | $CH_3CN$                          | CH <sub>3</sub> CCH               | $CH_3C_3N$                         | $CH_3CH_2OH$                            | $HOCH_2CH_2OH$                      | $CH_3C_6H$                           | $n-C_3H_7CN$                       | HC11N                            | $2\text{-}C_{10}H_7CN$                            | $C_{60}^{+}$ |
| $CH^+$              | $SO^+$           | HCN      | SiCN             | HNCO               | $C_3N^-$         | $CH_2NH$   | HNCNH              | NH <sub>2</sub> CHO               | $\mathrm{CH}_3\mathrm{NH}_2$      | $C_7H$                             | $\mathrm{CH}_3\mathrm{CH}_2\mathrm{CN}$ | CH <sub>3</sub> CH <sub>2</sub> CHO | C <sub>2</sub> H <sub>5</sub> OCHO   | i-C <sub>3</sub> H <sub>7</sub> CN |                                  | $C_9H_8$                                          | C70          |
| OH                  | $CO^+$           | OCS      | AINC             | H <sub>2</sub> CS  | $PH_3$           | $NH_2CN$   | $CH_3O$            | $CH_3SH$                          | CH <sub>2</sub> CHCN              | CH <sub>3</sub> COOH               | HC7N                                    | $CH_3C_5N$                          | CH <sub>3</sub> COOCH <sub>3</sub>   | $1-C_5H_5CN$                       |                                  |                                                   |              |
| CO                  | HF               | HNC      | SiNC             | $C_2H_2$           | HCNO             | $H_2CCO$   | $NH_3D^+$          | $C_2H_4$                          | $HC_5N$                           | $H_2C_6$                           | $CH_3C_4H$                              | CH <sub>3</sub> CHCH <sub>2</sub> O | CH <sub>3</sub> COCH <sub>2</sub> OH | $2\text{-}C_5H_5CN$                |                                  |                                                   |              |
| $H_2$               | $N_2$            | $H_2S$   | HCP              | $C_3N$             | HOCN             | $C_4H$     | $H_2NCO^+$         | $C_5H$                            | $C_6H$                            | CH <sub>2</sub> OHCHO              | $C_8H$                                  | CH <sub>3</sub> OCH <sub>2</sub> OH | $C_5H_6$                             |                                    |                                  |                                                   |              |
| SiO                 | $CF^+$           | $N_2H^+$ | CCP              | HNCS               | HSCN             | SiH4       | NCCNH <sup>+</sup> | CH <sub>3</sub> NC                | c-C <sub>2</sub> H <sub>4</sub> O | $HC_6H$                            | CH <sub>3</sub> CONH <sub>2</sub>       |                                     |                                      |                                    | H                                | ligh Cor                                          | nplexity     |
| CS                  | PO               | $C_2H$   | AlOH             | $HOCO^+$           | HOOH             | $c-C_3H_2$ | CH <sub>3</sub> Cl | HC <sub>2</sub> CHO               | CH <sub>2</sub> CHOH              | CH <sub>2</sub> CHCHO              | $C_8H^-$                                | Biologic                            | ally                                 |                                    |                                  |                                                   |              |
| SO                  | $O_2$            | $SO_2$   | $H_2O^+$         | $C_3O$             | $1-C_3H^+$       | $CH_2CN$   | MgC <sub>3</sub> N | $H_2C_4$                          | $C_6H^-$                          | CH <sub>2</sub> CCHCN              | CH <sub>2</sub> CHCH <sub>3</sub>       | Relevan                             | t                                    |                                    |                                  |                                                   |              |
| SiS                 | AlO              | HCO      | $H_2Cl^+$        | $1-C_3H$           | HMgNC            | $C_5$      | $HC_3O^+$          | $C_5S$                            | CH <sub>3</sub> NCO               | NH <sub>2</sub> CH <sub>2</sub> CN | $CH_3CH_2SH$                            |                                     |                                      |                                    |                                  |                                                   |              |
| NS                  | $CN^{-}$         | HNO      | KCN              | HCNH <sup>+</sup>  | HCCO             | $SiC_4$    | NH <sub>2</sub> OH | $\mathrm{HC_3NH^+}$               | $HC_5O$                           | CH <sub>3</sub> CHNH               | HC7O                                    |                                     |                                      |                                    |                                  |                                                   |              |
| $C_2$               | $OH^+$           | $HCS^+$  | FeCN             | $H_3O^+$           | CNCN             | $H_2CCC$   | $HC_3S^+$          | $C_5N$                            | HOCH <sub>2</sub> CN              | CH <sub>3</sub> SiH <sub>3</sub>   | CH <sub>3</sub> NHCHO                   |                                     |                                      |                                    |                                  |                                                   |              |
| NO                  | $SH^+$           | $HOC^+$  | $HO_2$           | $C_3S$             | HONO             | $CH_4$     | $H_2CCS$           | $HC_4H$                           | $\rm HC_4NC$                      | NH <sub>2</sub> CONH <sub>2</sub>  | H <sub>2</sub> CCCHCCH                  |                                     |                                      |                                    |                                  |                                                   |              |
| HCI                 | $HCl^+$          | $SiC_2$  | TiO <sub>2</sub> | c-C <sub>3</sub> H | MgCCH            | HCCNC      | $C_4S$             | $HC_4N$                           | HC <sub>3</sub> HNH               | HCCCH <sub>2</sub> CN              | HCCCHCHCN                               |                                     |                                      |                                    |                                  |                                                   |              |
| NaCl                | SH               | $C_2S$   | CCN              | $HC_2N$            | HCCS             | HNCCC      | CHOSH              | c-H <sub>2</sub> C <sub>3</sub> O | c-C <sub>3</sub> HCCH             | CH <sub>2</sub> CHCCH              | H <sub>2</sub> CCHC <sub>3</sub> N      |                                     |                                      |                                    |                                  |                                                   |              |
| AlCl                | TiO              | $C_3$    | SiCSi            | H <sub>2</sub> CN  |                  | $H_2COH^+$ |                    | CH <sub>2</sub> CNH               |                                   |                                    |                                         |                                     |                                      |                                    |                                  |                                                   |              |
| KCl                 | ArH <sup>+</sup> | $CO_2$   | $S_2H$           |                    |                  |            |                    | $C_5 N^-$                         |                                   |                                    |                                         |                                     |                                      |                                    |                                  |                                                   |              |
| AlF                 | $NS^+$           | $CH_2$   | HCS              | Mineralogically    |                  |            |                    | HNCHCN                            |                                   |                                    |                                         |                                     |                                      |                                    |                                  |                                                   |              |
| PN HeH <sup>+</sup> |                  | $C_2O$   | HSC              | Polovant           |                  |            |                    | SiH <sub>3</sub> CN               |                                   |                                    |                                         |                                     |                                      |                                    |                                  |                                                   |              |
| SiC                 | VO               | MgNC     | NCO              | Neievall           |                  |            | $MgC_4H$           |                                   |                                   |                                    |                                         |                                     |                                      |                                    |                                  |                                                   |              |
| CP                  |                  | $NH_2$   | CaNC             |                    |                  |            |                    | $CH_3CO^+$                        |                                   |                                    |                                         |                                     |                                      |                                    |                                  |                                                   |              |
|                     |                  | NaCN     | NCS              |                    |                  |            |                    | H <sub>2</sub> CCCS               |                                   |                                    |                                         |                                     |                                      |                                    |                                  |                                                   |              |
| 2 <u></u>           |                  | $N_2O$   |                  |                    |                  |            |                    | CH <sub>2</sub> CCH               |                                   | 1                                  |                                         |                                     |                                      |                                    |                                  |                                                   |              |

#### **Cosmic Chemistry Cycle**



#### Ices – the Factories of Interstellar Molecular Complexity!



Herczku et al., Rev. Sci. Instrum. 92, 084501.

|                               | X <sub>H2O</sub> <sup>a</sup> [%]        |                                                |                                             |                          |  |  |  |  |  |  |
|-------------------------------|------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------|--|--|--|--|--|--|
| Species                       | MYSOs                                    | LYSOs                                          | BG Stars <sup>c</sup>                       | Comets                   |  |  |  |  |  |  |
| Securely ider                 | ntified species:d                        |                                                |                                             |                          |  |  |  |  |  |  |
| H <sub>2</sub> O <sup>e</sup> | 100                                      | 100                                            | 100                                         | 100                      |  |  |  |  |  |  |
| CO <sup>e</sup>               | 7 <sup>15</sup> <sub>4</sub> (7)<br>3–26 | 21 <sup>35</sup> <sub>12</sub> (18)<br>(<3)-85 | 25 <sup>43</sup><br>9–67                    | nd<br>0.4–30             |  |  |  |  |  |  |
| CO <sub>2</sub> <sup>e</sup>  | 19 <sup>25</sup><br>11–27                | 28 <sup>37</sup><br>12-50                      | 26 <sup>39</sup><br>14–43                   | 15 <sup>24</sup><br>4–30 |  |  |  |  |  |  |
| CH <sub>3</sub> OH            | $9^{23}_{5}(5)$<br>(<3)-31               | 6 <sup>12</sup> (5)<br>(<1)-25                 | 8 <sup>10</sup> <sub>6</sub> (6)<br>(<1)-12 | nd<br>0.2–7              |  |  |  |  |  |  |
| NH3                           | $^{nd}_{\sim 7^{f}}$                     | 6 <sup>8</sup> <sub>4</sub> (4)<br>3–10        | nd<br><7                                    | nd<br>0.2–1.4            |  |  |  |  |  |  |
| CH4                           | nd<br>1-3                                | 4.5 <sup>6</sup> <sub>3</sub> (3)<br>1–11      | nd<br><3                                    | nd<br>0.4–1.6            |  |  |  |  |  |  |
| Likely identi                 | fied species: <sup>g</sup>               |                                                |                                             | 9                        |  |  |  |  |  |  |
| H <sub>2</sub> CO             | ~2-7                                     | ~6                                             | nd                                          | 0.11-1.0                 |  |  |  |  |  |  |
| OCN-                          | 0.6 <sup>0.7</sup><br>0.1–1.9            | $0.6^{0.8}_{0.4}(0.4)$<br>(<0.1)-1.1           | nd<br><0.5                                  | nd<br>nd                 |  |  |  |  |  |  |
| OCS                           | 0.03-0.16                                | ≤1.6                                           | < 0.22                                      | 0.1-0.4                  |  |  |  |  |  |  |

#### Boogert et al., Annu. Rev. Astron. Astrophys. 53, 541.

#### **Constraining the Chemical Compositions of Icy Mantles**





#### **Constraining the Chemical Compositions of Icy Mantles**

- Several telescopes available to collect mid-IR and THz spectra
- Laboratory spectral data needed to interpret observations



Image credits: NASA, USRA (Universities Space Research Association), and L-3 Communications Integrated Systems

#### Advantages of THz Spectroscopy Compared to Mid-IR

- Mid-IR
  - Only intra-molecular vibrational modes can be observed
  - Different molecules sharing functional moieties may be hard to identify
- THz
  - Lower energy vibrations are probed, including inter-molecular ones
  - Technique is sensitive to long-range interactions between molecules and ice structure

#### Advantages of THz Spectroscopy Compared to Mid-IR

- Mid-IR
  - Transitions can only be observed in absorption
  - A mid-IR source (e.g., a YSO) behind the line of sight is needed, greatly reducing the number of astronomical settings that may be studied

#### • THz

- Low energetic transitions mean that at <150 K absorption can occur against the background continuum
- Molecules may therefore be studied via their emission signals

#### Early Forays into Laboratory Far-IR Spectroscopy



Noticeable differences in the spectra of amorphous (left) and crystalline (right) ices.

•

 Indication of the usefulness of THz spectroscopy.

Moore and Hudson, *Radiat. Phys. Chem.* **45**, 779.

**Collect a signal in the time domain.....and Fourier transform numerically** 



Laboratory TD-THz spectroscopy can be broken down into two very basic concepts:

- THz Pulse Generation
  - via two-colour plasma
- THz Detection
  - via electro-optical sampling



#### **THz Pulse Generation**

- BBO frequency double amplified 800 nm output to 400 nm
- Calcite compensate for phase delay between 400 and 800 nm pulses
- Dual-Band Wave-Plate align polarisations
- Focus 400 and residual 800 nm light to form plasma in air

Mechanism:

- 800 nm light generates plasma
- 400 nm light accelerates electrons in plasma
- Accelerated electrons emit THz pulses



**THz Detection** 

- THz beams are focused down onto a crystal (ZnTe or GaP)
- THz pulse causes a rotation in the polarisation of the probe beam in the crystal (Pockels Effect)
- Magnitude of polarisation change is linear to applied THz electric field (so measure THz electric field not intensity)
- A pair of balanced detectors sees a difference in signal

#### Electro-optic Crystal Polarizer Balanced Detectors $\lambda/4$ plate



**Opto-Mechanical Delay** 

- Allows the entire THz waveform to be stepped through
- The electric field is measured as a function of delay time
- FFT of the temporal waves gives spectral distribution in the frequency domain.





## THz Spectra of Astrophysical Ice Analogues Comparisons with Mid-IR Spectra for H<sub>2</sub>O



- Four absorptions in the H<sub>2</sub>O mid-IR spectrum
- Peak appearances vary due to temperature and phase.
- THz spectra contains many weak features.
- Four strong absorptions in crystalline H<sub>2</sub>O.

loppolo et al., *Faraday Discuss.* 168, 461.

17

#### **THz Spectra of Astrophysical Ice Analogues** Comparisons with Mid-IR Spectra for Other Molecules



loppolo et al., Faraday Discuss. 168, 461.

#### THz Spectra of Astrophysical Ice Analogues The Temperature Effect



- THz peaks in crystalline ices are stronger, sharper, and blueshifted at lower temperatures.
- Peak shifting and broadening results from the anharmonicity of vibrational potential.
- Hot bands are red-shifted due to decrease in the spacing between vibrational levels.
- At low temperature, only lower vibrational states are populated and so bands are blue-shifted and sharper.
- Different vibrational minima corresponding to different crystal structures will exhibit different bands.
- Intramolecular torsional modes may be apparent.

loppolo et al., Faraday Discuss. 168, 461.

#### THz Spectra of Astrophysical Ice Analogues The Composition Effect

- Contaminant species may alter the intermolecular H-bonding networks in ices.
- If the peaks of a contaminant affect those of the bulk ice independent of contaminant concentration, and these peaks also grow proportionally to their concentration, then segregation may have occurred (e.g., CO<sub>2</sub>, CH<sub>3</sub>CHO).

Allodi et al., *Phys. Chem. Chem. Phys.* **16**, 3442. Ioppolo et al., *Faraday Discuss.* **168**, 461.



#### THz Spectra of Astrophysical Ice Analogues The Composition Effect

#### Thermal processing of mixed $CH_3OH:CO_2$ 1:1 ice



McGuire et al., Phys. Chem. Chem. Phys. 18, 20199.

- Ann. to 140 K, \ 10 K
- Ann. to 120 K, \ 10 K
- Ann. to 90 K, \10 K

#### THz Spectra of Astrophysical Ice Analogues The Composition Effect



McGuire et al., *Phys. Chem. Chem. Phys.* **18**, 20199.

#### Key Points of THz Laboratory Astrochemistry

- THz spectroscopy offers an additional and complementary analytical tool to mid-IR spectroscopy.
- THz spectroscopy is not limited to a particular line of sight, offering a wider choice of observable targets.
- THz spectroscopy is sensitive to the temperature, structure, and chemical composition of an astrophysical ice.
- Further laboratory spectra must be acquired to aid in deciphering astrophysical observations.

#### Detection of Ices in Protoplanetary Disks ISO Data - Herbig Ae Stars HD142527





#### Malfait et al. (1999)



#### Detection of Trans-Neptunian Ices PACS Data - T Tauri Stars



with water ice

with silicates and graphite

McClure, PhD Thesis (2014)



### A Missed Opportunity SPace Infrared telescope for Cosmology and Astrophysics



#### A Missed Opportunity SPace Infrared telescope for Cosmology and Astrophysics



#### Potential Detection of COMs in the THz



28

#### CO<sub>2</sub> - Amorphous vs crystalline Ice



#### **SOFIA Observations Cycle 3**

#### 50 minutes of integration time





#### **SOFIA Observations Cycle 3**







#### ALMA - Atacama Large Millimeter/submillimeter Array



#### ALMA - Atacama Large Millimeter/submillimeter Array



#### ALMA - Atacama Large Millimeter/submillimeter Array Emission Spectroscopy

#### <u>(sub)mm Observations</u>







<u>Top-View</u>



Auriacombe et al., MNRAS in prep.

#### Side-View









Auriacombe et al., MNRAS in prep.







37



**Methanol** 

Nitrous Oxide (N<sub>2</sub>O)

38

326 GHz,...

326,55 GHz



#### **Final Remarks**

- Need for airborne or spaceborne observatory instruments with appropriate bandwidth, resolution, and sensitivity.
- THz ice spectroscopy has the potential to identify the presence and temperature of COMs in interstellar ices and to characterize physics and chemistry of the ISM.
- THz Desorption Emission Spectroscopy can be used to study thermal desorption of COMs. More technology development needed to study non-thermal processes.

### Thanks for your attention! *Any questions?*

#### **Key Papers:**

- Allodi et al. (2014), *Phys. Chem. Chem. Phys.* 16, 3442
- Ioppolo et al. (2016), Faraday Discuss. 168, 461
- McGuire et al. (2016), Phys. Chem. Chem. Phys. 18, 20199
- Mifsud et al. (2021), Front. Astron. Space Sci. 8, 757619

