

Data reduction of large maps with the upGREAT heterodyne instrument

SOFIA tele talks | Ronan Higgins | 26.01.2022

Talk outline

- Background to Orion Impact proposal
- Mapping strategy
- Data reduction process and data quality
- Overcoming data quality issues
- Looking to future
 - Data formats
 - Improving observing efficiency

Impact proposal 04_0066

- Proposed in summer 2015 by a team led by Xander Tielens
- 42 hours observing time
- Observed over 13 flights
- Largest single map undertaken with SOFIA to date

SOFIA Proposal 04_0066

The large scale [CII] emission from the Orion molecular cloud

Principal Investigator: Prof. Alexander Tielens

Impact proposal 04_0066: publications/PhD theses

Observation and calibration strategies for large-scale multi-beam velocity-resolved mapping of the [CII] emission in the Orion molecular cloud*

R. Higgins¹, S. Kabanovic¹, C. Pabs¹, D. Teyssier¹, J. R. Goicoechea⁴, O. Berne⁵, E. Chambers⁶, M. Wolfire², S. T. Suri⁸, C. Buchbender⁶, Y. Okada⁴, M. Mertens¹, A. Parikka⁶, R. Aladro⁹, H. Richter¹⁰, R. Güsten⁹, J. Stutzk¹, and A. G. G. M. Tielens²

Expanding bubbles in Orion A: [CII] observations of M42, M43, and NGC 1977

C. H. M. Pabst¹, J. R. Goicoechea², D. Teyssier³, O. Berné⁴, R. D. Higgins⁵, E. T. Chambers⁷, S. Kabanovic⁵, R. Güsten⁶, J. Stutzki⁵, and A. G. G. M. Tielens¹

[C II] 158 μ m line emission from Orion A. II. Photodissociation region physics

C. H. M. Pabs⁴⁰, J. R. Goicoechez⁴⁰, A. Hacau¹¹¹, D. Teyssiel⁴⁰, O. Bern⁴⁰, M. G. Wolfirk⁴⁰, R. D. Higgins⁴⁰, E. T. Chambers⁴⁰, S. Kabanovic⁴⁰, R. Göster⁴¹, J. Stutzk⁴⁰, C. Kramer⁴¹¹, and A. G. G. M. Tielen⁴¹¹

Carbon radio recombination lines from gigahertz to megahertz frequencies towards Orion A

P. Salas¹, J. B. R. Oonk^{1,2}, K. L. Emig¹, C. Pabst¹, M. C. Toribio¹, H. J. A. Röttgering¹, and A. G. G. M. Tielens¹

Disruption of the Orion molecular core 1 by wind from the massive star θ^1 Orionis C

C. Pabst¹, R. Higgins², J. R. Goicoechea³, D. Teyssier⁴, O. Berne⁵, E. Chambers⁶, M. Wolfire⁷, S. T. Suri², R. Guesten⁸, J. Stutzki², U. U. Graf², C. Risacher^{8,9} & A. G. G. M. Tielens¹*

[C_{II}] 158 μm line emission from Orion A I. A template for extragalactic studies?

C. H. M. Pabst¹, A. Hacar^{1,2}, J. R. Goicoechea³, D. Teyssier⁴, O. Berné⁵, M. G. Wolfire⁶, R. D. Higgins⁷, E. T. Chambers⁸, S. Kabanovic⁷, R. Güsten⁹, J. Stutzki⁷, C. Kramer¹⁰, and A. G. G. M. Tielens^{1,6}

Molecular globules in the Veil bubble of Orion

IRAM 30 m ¹²CO, ¹³CO, and C¹⁸O (2–1) expanded maps of Orion A*

J. R. Goicoechea¹, C. H. M. Pabst², S. Kabanovic³, M. G. Santa-Maria¹, N. Marcelino¹, A. G. G. M. Tielens², A. Hacar², O. Berné⁴, C. Buchbender³, S. Cuadrado¹, R. Higgins³, C. Kramer⁵, J. Stutzki³, S. Suri⁶, D. Teyssier⁷, and M. Wolfire⁸

Phd theses:

Cornelia Pabst (Uni Leiden)

<u>Sümeyye Suri (Uni Köln)</u>

Slawa Kabanovic (Uni Köln Q4 2022)

Observing strategy

Observation details: Heterodyne mapping observation

Observation details: array OTF mapping mode

84 OTF dumps of 0.3 second duration

Observation details: OFF contamination

- OFF observation
- Concern about stability led to a minimisation of slew time
- 3 off positions had significant emission
- Concern about stability, OFF positions measured on each flight

Observation details: flight paths

Flight ID	Tiles	Tile IDs	Spectra coun
2016-11-10 GR F348	2	0505, 0605	34 272
2016-11-15_GR_F349	9	0105, 0205, 0304, 0305, 0306, 0307,0405, 0705, 0805	272 160
2016-11-16_GR_F350	8	0206, 0301, 0302, 0303, 0406, 0506, 0606, 0706	226 800
2016-11-17_GR_F351	8	0106, 0107, 0206, 0207, 0407, 0507, 0607, 0608	226 800
2016-11-18 GR F352	8	0204, 0404, 0408, 0504, 0508, 0604, 0704, 0804	244 440
2017-02-08 GR F371	8	0004, 0104, 0204, 0206, 0503, 0505, 0603, 0605	181 440
2017-02-09 GR F372	10	0003, 0103, 0203, 0403, 0502, 0602, 0603, 0702, 0703, 0803	277 200
2017-02-10_GR_F373	5	0102, 0202, 0402, 0501, 0601	138 600
2017-02-14 GR F374	8	0101, 0201, 0401, 0509, 0601, 0609, 0708, 0709	209 160
2017-02-15 GR F375	8	0309, 0310, 0409, 0410, 0509, 0510, 0610, 0710	236 880
2017-02-16 GR F376	7	0311, 0411, 0511, 0611, 0612, 0711, 0712	185 220
2017-02-17_GR_F377	9	0308, 0312, 0403, 0412, 0512, 0612, 0703, 0707, 0803	228 060
		Total Spectra	2 461 032

2.4 million spectra140 Gb of raw data

Data reduction and data quality

Data reduction process

GREAT/SOFIA atmospheric calibration*

X. Guan¹, J. Stutzki¹, U. U. Graf¹, R. Güsten², Y. Okada¹, M. A. Requena-Torres², R. Simon¹, and H. Wiesemeyer²

- Kalibrate code used to convert raw counts to rayleigh jeans corrected temperature scale and correct for atmospheric transmission
- Data written to gildas/CLASS data format
- Baseline correction and data filtered for outliers
- Velocity cube generated within class

Data reduction process

GREAT/SOFIA atmospheric calibration*

X. Guan¹, J. Stutzki¹, U. U. Graf¹, R. Güsten², Y. Okada¹, M. A. Requena-Torres², R. Simon¹, and H. Wiesemeyer²

- Kalibrate code used to convert raw counts to rayleigh jeans corrected temperature scale and correct for atmospheric transmission
- Data written to gildas/CLASS data format
- Baseline correction and data filtered for outliers
- Velocity cube generated within class

Data quality overview

Good Bad Worse 2016-11-10_GR_F348,04_0066_0010505,OMC_CENTER,LFAV,130.9 2017-02-08_GR_F371,04_0066_0010505,OMC_CENTER,LFAV,130.9 2017-02-09_GR_F372,04_0066_0010502,OMC_CENTER,LFAV,130.9 SOF-LFAV_1_S SOF-LFAV_6_S SOF-LFAV_1_S SOF-LFAV 6 S SOF-LFAV_1_S SOF-LFAV_6_S 200 200 200 200 200 200 100 100 100 -100 -100 -100 -200 -200 -200 -200 200 400 600 800 1000 1200 400 600 800 1000 1200 400 800 1000 1200 400 600 800 1000 1200 800 1000 1200 400 600 800 1000 1200 SOF-LFAV 2 S SOF-LFAV_5_S SOF-LFAV 0 S SOF-LFAV_5_S SOF-LFAV_0_S SOF-LFAV_5_S SOF-LFAV_0_S SOF-LFAV 2 S 200 200 200 100 100 -100 100 200 600 800 1000 1200 400 600 800 1000 1200 400 600 800 1000 1200 600 800 1000 1200 400 600 800 1000 1200 400 600 800 1000 1200 600 and 1000 1200 400 600 800 1000 1200 400 600 800 1000 SOF-LFAV 4 S SOF-LFAV_3_S SOF-LFAV 4 S SOF-LFAV_3_S SOF-LFAV_4_S SOF-LFAV_3_S 200 200 -200 200 200 200 100 100 100 100 100 100 -100 --100 -100 -100 -100 -100 -200 --200 -200 -200 -200 -200

Data reduction of large heterodyne maps, Ronan Higgins | 26.01.2021

Slide 13

Baseline correction

- Classic problem in heterodyne receivers
- Data can be corrupted by receiver systematics
 - Reflections from secondary mirror
 - Reflections from calibration loads
 - Reflections in IF chain (after mixing)

Baseline correction: standing waves physics

Standing waves in optics

- Sinusoidal like but can have a modulated amplitude due to interference between sidebands
- Amplitude/phase is LO dependent due to sideband interference
- Period corresponds to cavity in optics

Standing waves in IF chain

- Irregular pattern across band, dependent on reflection properties of IF chain component (<u>see here</u>)
- Phase/amplitude LO
 independent

Slide 15

 Phase/amplitude dependent on electrical state of the calibration phases (stable system = no baseline effects)

() SER 956

zu Köl

Baseline correction

- Typical step in heterodyne data processing processing
- Standard approach is to flag the line region and run a polynomial fit on the remaining baseline
- Where the baseline has local variations fitting a polynomial can corrupt the line emission
- Particular problem for regions with broad lines (e.g. M51 / galactic center)
- Alternative approach needed

Baseline correction: scaled spline

- From HIFI experience, a scaled splined based on off spectra observations worked well (see <u>Do kester HEB standing waves paper</u>)
- This approach was used for the Orion data set
- Residuals between OFF spectra used to generate a catalog of baseline shapes, under the assumption that OFF1-OFF2 spectra have similar baseline shapes to ON-OFF spectra

Baseline correction: OFF catalog example

Data reduction of large heterodyne maps, Ronan Higgins | 26.01.2021

Slide 18

Universit

zu Köl

△ SFB 956

Baseline correction: fitting spline to data

Baseline correction: spline correction process

Baseline correction: spline correction outcome

Baseline correction: spline correction outcome

Universit

zu Kö

△ SFB 956

Baseline correction: spline correction RMS before/after

Improving data quality

- IF standing waves are a deficiency of receivers with HEB mixer
- Variable impedance of mixer leads to different reflection properties in mixer, small changes in <u>LO</u>
 <u>output power</u>, mechanical
 vibration, varying temperature can affect the pump state leaving baseline residuals in the data
- Problem first noted in the Herschel/HIFI instrument even when operating in a more stable thermal environment

Data reduction of large heterodyne maps, Ronan Higgins | 26.01.2021

LO dependent performance

Note degradation in the LFAV LO towards later flights 24

Data quality: radio interference

Scratches seen in map at particular channels for particular pixels

Data quality: radio interference

Data quality: overcoming radio interference

- 2-3 pixels in H array affects by RFI. Can't afford to drop whole pixel in cube generation, coverage too thin, leads to holes in map
- Weight RFI affected channels down in map making, required custom script in gildas (channel weighting not natively supported)
- Use <u>associated array</u> in gildas to track RFI affected spectra
- RFI affected channels are not recoverable!

Flagged spectra example, red shows the associated array for RFI

Flexible Data format and house keeping data synergies

upGREAT data processing: CLASS rigidity

Universit

A SER 956

Slide 30

upGREAT data processing: class rigidity

upGREAT data processing: using receiver data to detect anomalies

- IF Standing waves can be inferred direct from receiver housekeeping
- When you have the mixer current you can flag problem spectra, and identify source of baseline issue

Lessons learned from data processing

- Large part of data reduction was undertaken writing tools to get around short coming in CLASS data format and scripting environment
- CLASS is fast for core functionality, map making, baselining but struggles with more complex reductions
- Drawbacks:
 - Rigid data format
 - Limit time series support
 - Filtering of data limited
- To overcome these drawbacks we developed a python/pandas table add-on using the <u>pyclass</u> library, not a stable solution. Flexibility should be supported in data format
- Having all housekeeping data conveniently available in data reduction would help implementing an automatic reduction pipeline

Slide 33

Code used in data reduction

Pull requests Issues Marketplace Explore

G KOSMAsubmm / kosma gildas dic Public

♦ Code ① Issues 11 Pull requests ③ Actions 🗄 Projects 🖽 Wiki 🛈 Security 🗠 Insights 🔞 Settings

pkl-

https://github.com/KOSMAsubmm/kosma gildas dlc/

Spline demo script

define structure kosma
file in data/spline test data.kosma
find
set unit v
set win -300 -180 20 40
L nenerate spline archive
, set source *diff*
find
for i 1 to found
yet n I smooth level is important
I break a first the balance the pairs and
i basettie reaches can be betweine unter and the best and
1 40 LS a good value for the typical hravytrav baseline structure
smooth box 40
spline /rit_spline /store_spline_in_archive -
/spline_archive_filename_spline_output/spline_archive_felescope .
/Logging_level into -
/output_plots_path spline_output/
next

P main - P1 br	nch 🚫 0 tags	Go to file	Add file * Code -	
RonanHiggins rer	oved excess libraries	cfaoldf on Fr	ab 14, 2021 🔞 4 commits	
doc	initial commit from development library		12 months ago	
kosma_py	initial commit from development library	12 months		
kosma_py_lib	removed excess libraries		12 months ago	
tests	initial commit from development library		12 months ago	
LICENSE	Initia) commit		13 months ago	
Makefile	initial commit from development library	12 months ag		
BEADME.md	added some examples		12 months ago	
kosma-init class	removed excess libraries		12 months ago	

KOSMA GILDAS DLC

This repository contains a number of functions using the glidas-python library. This includes

· spline fitting of spectra

E README.md

- · despike spectra and storing result in an associated array
- · storing the index and quality measured in python/pandas table
- · plotting this python/pandas table with various groupings/histogram
- · interactive plotting of data (show spectra on click)
- · filter spectra using complex data base like queries
- · add assocated line windows to spectra using a map as an input
- return FFT power at a given frequency
- plot FFT using numpy libraries

The test folder contains example of the commands.

GILDAS functions developed at sity of Cologne to aid data ssing and release adme T License tars vatching orks ses ses published new release Packages

Q Pin

窗

No packages published Publish your first package

Languages

Slide 34

Python 99.6%.
 Makefile 0.4%.

△ SFB 956

zu Köln

Lessons learned for future observations

- Angular distance to OFF position can be relaxed
 - Keeping to 20 arcminute limit added additional workload and lost observing time, recent GT Orion projects have gone directly to far off (~1 degree distance) without affecting data quality
- Consider relaxing total power stability time
 - Currently limited to 30 seconds for ON OTF scans
 - New baseline reduction techniques allows for longer scan times, consider testing longer scan times, increases efficiency
- Shorter dump times, more coverages
 - To improve redundancy consider going to shorter dump times but more coverages, recent tests at 0.1 seconds have worked well
 - The array OTF mapping mode requires uniform data quality across the array otherwise you get holes in your map due to poor pixel. Having multiple coverages with different pixels leads to better data quality (experience used in FEEDBACK legacy project)
- Don't integrate single point observation into large single data blocks
 - OFF check observed with 15 second integration
 - Data quality was poor, 1 second instability corrupted entire spectra
 - Dump single point total power spectra in blocks of 0.5 seconds, average together afterwards
 - Recent GT tests using an adapted very slow OTF mode have worked well

Slide 36

△ SFB 956

