
HAWC+ DRP User’s Manual
Release : SOF-US-HBK-OP10-2008 Rev. J

M. Clarke, M. Berthoud, A. Kovács, F. Santos, G. Novak

Feb 04, 2022

Contents

I Introduction 4

II SI Observing Modes Supported 4

1 HAWC+ Instrument Information 4

2 HAWC+ Observing Modes 4

III Algorithm Description 5

3 Chop-Nod and Nod-Pol Reduction Algorithms 5
3.1 Prepare . 5
3.2 Demodulate . 10
3.3 Flat Correct . 10
3.4 Align Arrays . 11
3.5 Split Images . 11
3.6 Combine Images . 11
3.7 Subtract Beams . 11
3.8 Compute Stokes . 12
3.9 Update WCS . 12
3.10 Subtract Instrumental Polarization . 13
3.11 Rotate Polarization Coordinates . 13
3.12 Correct for Atmospheric Opacity . 14
3.13 Calibrate Flux . 14
3.14 Subtract Background . 15
3.15 Rebin Images . 15
3.16 Merge Images . 16
3.17 Compute Vectors . 17

4 Scan Reduction Algorithms 18
4.1 Signal Structure . 18
4.2 Sequential Incremental Modeling and Iterations . 18
4.3 Initialization and Scan Validation . 20
4.4 DC Offset and 1/f Drift Removal . 20

1

4.5 Correlated Noise Removal and Gain Estimation . 21
4.6 Noise Weighting . 22
4.7 Despiking . 22
4.8 Spectral Conditioning . 22
4.9 Map Making . 23
4.10 Point-Source Flux Corrections . 24
4.11 Scan Map Output . 25

5 Scan-Pol Reduction Algorithms 25

6 Other Resources 26

IV Data Products 26

7 File names 26

8 Data format 27

9 Pipeline products 27

V Grouping Level 0 Data for Processing 29

VI Configuration and Execution 29

10 Installation 29
10.1 External Requirements . 30
10.2 Source Code Installation . 30

11 Configuration 31

12 Input Data 31
12.1 Auxiliary Files . 32

13 Automatic Mode Execution 33

14 Manual Mode Execution 34
14.1 Basic Workflow . 35
14.2 Display Features . 38

15 Important Parameters 42

VII Data Quality Assessment 46

VIII Appendix: Scan Map Option Glossary 47

IX Appendix: Sample Configuration Files 88

16 Full DRP Configuration File 88

17 DRP Override Configuration File 103

2

SOF-US-HBK-OP10-2008
Rev. J

18 Full Scan Map Configuration File 104

19 HAWC+ Scan Map Configuration File 111

X Appendix: Required Header Keywords 119

XI Appendix: Change notes for the HAWC+ pipeline 124

20 Significant changes 124
20.1 HAWC DRP v3.0.0 . 124
20.2 HAWC DRP v2.7.0 (2021-08-23) . 124
20.3 HAWC DRP v2.6.0 (2021-04-26) . 124
20.4 HAWC DRP v2.5.0 (2020-06-09) . 125
20.5 HAWC DRP v2.4.0 (2020-01-15) . 125
20.6 HAWC DRP v2.3.2 (2019-09-17) . 125
20.7 HAWC DRP v2.3.1 (2019-08-06) . 125
20.8 HAWC DRP v2.3.0 (2019-07-02) . 125
20.9 HAWC DRP v2.2.0 (2019-05-24) . 126
20.10HAWC DRP v2.1.0 (2019-02-21) . 126
20.11HAWC DRP v2.0.0 (2018-09-24) . 126
20.12HAWC DRP v1.3.0 (2018-05-17) . 126
20.13HAWC DRP v1.2.0 (2017-11-09) . 127
20.14HAWC DRP v1.1.1 (2017-05-17) . 127
20.15HAWC DRP v1.1.0 (2017-05-02) . 127
20.16HAWC DRP v1.0.1 (2017-01-30) . 127
20.17HAWC DRP v1.0.0 (2017-01-25) . 127

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
3

SOF-US-HBK-OP10-2008
Rev. J

Part I

Introduction
The SI Pipeline User’s Manual (OP10) is intended for use by both SOFIA Science Center staff during routine data
processing and analysis, and also as a reference for Guest Observers (GOs) and archive users to understand how the
data in which they are interested was processed. This manual is intended to provide all the needed information to
execute the SI data reduction pipeline, and assess the data quality of the resulting products. It will also provide a
description of the algorithms used by the pipeline and both the final and intermediate data products.

A description of the current pipeline capabilities, testing results, known issues, and installation procedures are docu-
mented in the SI Pipeline Software Version Description Document (SVDD, SW06, DOCREF). The overall Verification
and Validation (V&V) approach can be found in the Data Processing System V&V Plan (SV01-2232). Both documents
can be obtained from the SOFIA document library in Windchill.

This manual applies to HAWC DRP version 3.0.0.

Part II

SI Observing Modes Supported

1 HAWC+ Instrument Information

HAWC+ is the upgraded and redesigned incarnation of the High-Resolution Airborne Wide-band Camera instrument
(HAWC), built for SOFIA. Since the original design never collected data for SOFIA, the instrument may be alternately
referred to as HAWC or HAWC+. HAWC+ is designed for far-infrared imaging observations in either total intensity
(imaging) or polarimetry mode.

HAWC currently consists of dual TES BUG Detector arrays in a 64x40 rectangular format. A six-position filter wheel
is populated with five broadband filters ranging from 40 to 250 𝜇m and a dedicated position for diagnostics. Another
wheel holds pupil masks and rotating half-wave plates (HWPs) for polarization observations. A polarizing beam splitter
directs the two orthogonal linear polarizations to the two detectors (the reflected (R) array and the transmitted (T)
array). Each array was designed to have two 32x40 subarrays, for four total detectors (R0, R1, T0, and T1), but T1 is
not currently available for HAWC. Since polarimetry requires paired R and T pixels, it is currently only available for
the R0 and T0 arrays. Total intensity observations may use the full set of 3 subarrays.

2 HAWC+ Observing Modes

The HAWC instrument has two instrument configurations, for imaging and polarization observations. In both types
of observations, removing background flux due to the telescope and sky is a challenge that requires one of several
observational strategies. The HAWC instrument may use the secondary mirror to chop rapidly between two positions
(source and sky), may use discrete telescope motions to nod between different sky positions, or may use slow continuous
scans of the telescope across the desired field. In chopping and nodding strategies, sky positions are subtracted from
source positions to remove background levels. In scanning strategies, the continuous stream of data is used to solve for
the underlying source and background structure.

The instrument has two standard observing modes for imaging: the Chop-Nod instrument mode combines traditional
chopping with nodding; the Scan mode uses slow telescope scans without chopping. The Scan mode is the most
commonly used for total intensity observations. Likewise, polarization observations may be taken in either Nod-Pol

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
4

SOF-US-HBK-OP10-2008
Rev. J

or Scan-Pol mode. Nod-Pol mode includes chopping and nodding cycles in multiple HWP positions; Scan-Pol mode
includes repeated scans at multiple HWP positions.

All modes that include chopping or nodding may be chopped and nodded on-chip or off-chip. Currently, only two-point
chop patterns with matching nod amplitudes (nod-match-chop) are used in either Chop-Nod or Nod-Pol observations,
and nodding is performed in an A-B-B-A pattern only. All HAWC modes can optionally have a small dither pattern
or a larger mapping pattern, to cover regions of the sky larger than HAWC’s fields of view. Scanning patterns may be
either box rasters or Lissajous patterns.

Part III

Algorithm Description

3 Chop-Nod and Nod-Pol Reduction Algorithms

The following sections describe the major algorithms used to reduce Chop-Nod and Nod-Pol observations. In nearly
every case, Chop-Nod (total intensity) reductions use the same methods as Nod-Pol observations, but either apply the
algorithm to the data for the single HWP angle available, or else, if the step is specifically for polarimetry, have no
effect when called on total intensity data. Since nearly all total intensity HAWC observations are taken with scanning
mode, the following sections will focus primarily on Nod-Pol data.

See the figures below for flow charts that illustrate the data reduction process for Nod-Pol data (Fig. 1 and Fig. 2) and
Chop-Nod data (Fig. 3 and Fig. 4).

3.1 Prepare

The first step in the pipeline is to prepare the raw data for processing, by rearranging and regularizing the raw input
data tables, and performing some initial calculations required by subsequent steps.

The raw (Level 0) HAWC files contain all information in FITS binary table extensions located in two Header Data Unit
(HDU) extensions. The raw file includes the following HDUs:

• Primary HDU: Contains the necessary FITS keywords in the header but no data. It contains all required keywords
for SOFIA data files, plus all keywords required to reduce or characterize the various observing modes. Extra
keywords (either from the SOFIA keyword dictionary or otherwise) have been added for human parsing.

• CONFIGURATION HDU (EXTNAME = CONFIGURATION): Contains MCE (detector electronics) configu-
ration data. This HDU is stored only in the raw and demodulated files; it is not stored in Level 2 or higher data
products. Nominally, it is the first HDU but users should use EXTNAME to identify the correct HDUs. Note,
the “HIERARCH” keyword option and long strings are used in this HDU. All keyword names are prefaced with
“MCEn” where n=0,1,2,3. Only the header is used from this HDU.

• TIMESTREAM Data HDU (EXTNAME = TIMESTREAM): Contains a binary table with data from all detec-
tors, with one row for each time sample. The raw detector data is stored in the column “SQ1Feedback”, in FITS
(data-store) indices, i.e. 41 rows and 128 columns. Columns 0-31 are for subarray R0, 32-63 for R1, 64-95 for
T0 and 96-127 for T1). Additional columns contain other important data and metadata, including time stamps,
instrument encoder readings, chopper signals, and astrometry data.

In order to begin processing the data, the pipeline first splits these input TIMESTREAM data arrays into separate R
and T tables. It will also compute nod and chop offset values from telescope data, and may also delete, rename, or
replace some input columns in order to format them as expected by later algorithms. The output data from this step has
the same HDU structure as the input data, but the detector data is now stored in the “R Array” and “T Array” fields,
which have 41 rows and 64 columns each.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
5

SOF-US-HBK-OP10-2008
Rev. J

Fig. 1: Nod-Pol data reduction flowchart, up through Stokes parameter calculation for a single input file.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
6

SOF-US-HBK-OP10-2008
Rev. J

Fig. 2: Nod-Pol data reduction flowchart, picking up from Stokes parameter calculation, through combining multiple
input files and calculating polarization vectors.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
7

SOF-US-HBK-OP10-2008
Rev. J

Fig. 3: Chop-Nod data reduction flowchart, up through Stokes parameter calculation for a single input file.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
8

SOF-US-HBK-OP10-2008
Rev. J

Fig. 4: Chop-Nod data reduction flowchart, picking up from Stokes parameter calculation, through combining multiple
input files.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
9

SOF-US-HBK-OP10-2008
Rev. J

3.2 Demodulate

For both Chop-Nod and Nod-Pol instrument modes, data is taken in a two-point chop cycle. In order to combine the
data from the high and low chop positions, the pipeline demodulates the raw time stream with either a square or sine
wave-form. Throughout this step, data for each of the R and T arrays are handled separately. The process is equivalent
to identifying matched sets of chopped images and subtracting them.

During demodulation, a number of filtering steps are performed to identify good data. By default, the raw data is first
filtered with a box high-pass filter with a time constant of one over the chop frequency. Then, any data taken during
telescope movement (line-of-sight rewinds, for example, or tracking errors) is flagged for removal. In square wave
demodulation, samples are then tagged as being in the high-chop state, low-chop state, or in between (not used). For
each complete chop cycle within a single nod position at a single HWP angle, the pipeline computes the average of
the signal in the high-chop state and subtracts it from the average of the signal in the low-chop state. Incomplete chop
cycles at the end of a nod or HWP position are discarded. The sine-wave demodulation proceeds similarly, except that
the data are weighted by a sine wave instead of being considered either purely high or purely low state.

During demodulation, the data is also corrected for the phase delay in the readout of each pixel, relative to the chopper
signal. For square wave demodulation, the phase delay time is multiplied by the sample frequency to calculate the delay
in data samples for each individual pixel. The data is then shifted by that many samples before demodulating. For sine
wave demodulation, the phase delay time is multiplied with 2𝜋 times the chop frequency to get the phase shift of the
demodulating wave-form in radians.

Alongside the chop-subtracted flux, the pipeline calculates the error on the raw data during demodulation. It does so
by taking the mean of all data samples at the same chop phase, nod position, HWP angle, and detector pixel, then
calculates the variance of each raw data point with respect to the appropriate mean. The square root of this value gives
the standard deviation of the raw flux. The pipeline will propagate these calculated error estimates throughout the rest
of the data reduction steps.

The result of the demodulation process is a chop-subtracted, time-averaged flux value and associated variance for
each nod position, HWP angle, and detector pixel. The output is stored in a new FITS table, in the extension called
DEMODULATED DATA, which replaces the TIMESTREAM data extension. The CONFIGURATION extension is
left unmodified.

3.3 Flat Correct

After demodulation, the pipeline corrects the data for pixel-to-pixel gain variations by applying a flat field correction.
Flat files are generated on the fly from internal calibrator files (CALMODE=INT_CAL), taken before and after each
set of science data. Flat files contain normalized gains for the R and T array, so that they are corrected to the same
level. Flat files also contain associated variances and a bad pixel mask, with zero values indicating good pixels and any
other value indicating a bad pixel. Pixels marked as bad are set to NaN in the gain data. To apply the gain correction
and mark bad pixels, the pipeline multiplies the R and T array data by the appropriate flat data. Since the T1 subarray
is not available, all pixels in the right half of the T array are marked bad at this stage. The flat variance values are also
propagated into the data variance planes.

The output from this step contains FITS images in addition to the data tables. The R array data is stored as an image in the
primary HDU; the R array variance, T array data, T array variance, R bad pixel mask, and T bad pixel mask are stored as
images in extensions 1 (EXTNAME=”R ARRAY VAR”), 2 (EXTNAME=”T ARRAY”), 3 (EXTNAME=”T ARRAY
VAR”), 4 (EXTNAME=”R BAD PIXEL MASK”), and 5 (EXTNAME=”T BAD PIXEL MASK”), respectively. The
DEMODULATED DATA table is attached unmodified as extension 6. The R and T data and variance images are 3D
cubes, with dimension 64x41xN𝑓𝑟𝑎𝑚𝑒, where N𝑓𝑟𝑎𝑚𝑒 is the number of nod positions in the observation, times the
number of HWP positions.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
10

SOF-US-HBK-OP10-2008
Rev. J

3.4 Align Arrays

In order to correctly pair R and T pixels for calculating polarization, and to spatially align all subarrays, the pipeline
must reorder the pixels in the raw images. The last row is removed, R1 and T1 subarray images (columns 32-64) are
rotated 180 degrees, and then all images are inverted along the y-axis. Small shifts between the R0 and T0 and R1 and
T1 subarrays may also be corrected for at this stage. The spatial gap between the 0 and 1 subarrays is also recorded
in the ALNGAPX and ALNGAPY FITS header keywords, but is not added to the image; it is accounted for in a later
resampling of the image. The output images are 64x40xN𝑓𝑟𝑎𝑚𝑒.

3.5 Split Images

To prepare for combining nod positions and calculating Stokes parameters, the pipeline next splits the data into separate
images for each nod position at each HWP angle, calculates the sum and difference of the R and T arrays, and merges
the R and T array bad pixel masks. The algorithm uses data from the DEMODULATED DATA table to distinguish
the high and low nod positions and the HWP angle. At this stage, any pixel for which there is a good pixel in R but not
in T, or vice versa, is noted as a “widow pixel.” In the sum image (R+T), each widow pixel’s flux is multiplied by 2 to
scale it to the correct total intensity. In the merged bad pixel mask, widow pixels are marked with the value 1 (R only)
or 2 (T only), so that later steps may handle them appropriately.

The output from this step contains a large number of FITS extensions: DATA and VAR image extensions for each of
R+T and R-T for each HWP angle and nod position, a VAR extension for uncombined R and T arrays at each HWP
angle and nod position, as well as a TABLE extension containing the demodulated data for each HWP angle and nod
position, and a single merged BAD PIXEL MASK image. For a typical Nod-Pol observation with two nod positions
and four HWP angles, there are 8 R+T images, 8 R-T images, 32 variance images, 8 binary tables, and 1 bad pixel mask
image, for 57 extensions total, including the primary HDU. The output images, other than the bad pixel mask, are 3D
cubes with dimension 64x40xN𝑐ℎ𝑜𝑝, where N𝑐ℎ𝑜𝑝 is the number of chop cycles at the given HWP angle.

3.6 Combine Images

The pipeline combines all chop cycles at a given nod position and HWP angle by computing a robust mean of all the
frames in the R+T and R-T images. The robust mean is computed at each pixel using Chauvenet’s criterion, iteratively
rejecting pixels more than 3𝜎 from the mean value, by default. The associated variance values are propagated through
the mean, and the square root of the resulting value is stored as an error image in the output.

The output from this step contains the same FITS extensions as in the previous step, with all images now reduced to
2D images with dimensions 64x40, and the variance images for R+T and R-T replaced with ERROR images. For the
example above, with two nod positions and four HWP angles, there are still 57 total extensions, including the primary
HDU.

3.7 Subtract Beams

In this pipeline step, the sky nod positions (B beams) are subtracted from the source nod positions (A beams) at each
HWP angle and for each set of R+T and R-T, and the resulting flux is divided by two for normalization. The errors
previously calculated in the combine step are propagated accordingly. The output contains extensions for DATA and
ERROR images for each set, as well as variance images for R and T arrays, a table of demodulated data for each HWP
angle, and the bad pixel mask.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
11

SOF-US-HBK-OP10-2008
Rev. J

3.8 Compute Stokes

From the R+T and R-T data for each HWP angle, the pipeline now computes images corresponding to the Stokes I, Q,
and U parameters for each pixel.

Stokes I is computed by averaging the R+T signal over all HWP angles:

𝐼 =
1

𝑁

𝑁∑︁
𝜑=1

(𝑅 + 𝑇)𝜑,

where 𝑁 is the number of HWP angles and (𝑅 + 𝑇)𝜑 is the summed R+T flux at the HWP angle 𝜑. The associated
uncertainty in I is propagated from the previously calculated errors for R+T:

𝜎𝐼 =
1

𝑁

⎯⎸⎸⎷ 𝑁∑︁
𝜑=1

𝜎2
𝑅+𝑇,𝜑.

In the most common case of four HWP angles at 0, 45, 22.5, and 67.5 degrees, Stokes Q and U are computed as:

𝑄 =
1

2
[(𝑅− 𝑇)0 − (𝑅− 𝑇)45]

𝑈 =
1

2
[(𝑅− 𝑇)22.5 − (𝑅− 𝑇)67.5]

where (𝑅 − 𝑇)𝜑 is the differential R-T flux at the HWP angle 𝜑. Uncertainties in Q and U are propagated from the
input error values on R-T:

𝜎𝑄 =
1

2

√︁
𝜎2
𝑅−𝑇,0 + 𝜎2

𝑅−𝑇,45

𝜎𝑈 =
1

2

√︁
𝜎2
𝑅−𝑇,22.5 + 𝜎2

𝑅−𝑇,67.5.

Since Stokes I, Q, and U are derived from the same data samples, they will have non-zero covariance. For later use
in error propagation, the pipeline now calculates the covariance between Q and I (𝜎𝑄𝐼) and U and I (𝜎𝑈𝐼) from the
variance in R and T as follows:

𝜎𝑄𝐼 =
1

8
[𝜎2

𝑅,0 − 𝜎2
𝑅,45 − 𝜎2

𝑇,0 + 𝜎2
𝑇,45]

𝜎𝑈𝐼 =
1

8
[𝜎2

𝑅,22.5 − 𝜎2
𝑅,67.5 − 𝜎2

𝑇,22.5 + 𝜎2
𝑇,67.5]

The covariance between Q and U (𝜎𝑄𝑈) is zero at this stage, since they are derived from data for different HWP angles.

The output from this step contains an extension for the flux and error of each Stokes parameter, as well as the covariance
images, bad pixel mask, and a table of the demodulated data, with columns from each of the HWP angles merged. The
STOKES I flux image is in the primary HDU. For Nod-Pol data, there will be 10 additional extensions (ERROR I,
STOKES Q, ERROR Q, STOKES U, ERROR U, COVAR Q I, COVAR U I, COVAR Q U, BAD PIXEL MASK,
TABLE DATA). For Chop-Nod imaging, only Stokes I is calculated, so there are only 3 additional extensions (ERROR
I, BAD PIXEL MASK, TABLE DATA).

3.9 Update WCS

To associate the pixels in the Stokes parameter image with sky coordinates, the pipeline uses FITS header keywords
describing the telescope position to calculate the reference right ascension and declination (CRVAL1/2), the pixel scale
(CDELT1/2), and the rotation angle (CROTA2). It may also correct for small shifts in the pixel corresponding to the
instrument boresight, depending on the filter used, by modifying the reference pixel (CRPIX1/2). These standard FITS
world coordinate system (WCS) keywords are written to the header of the primary HDU.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
12

SOF-US-HBK-OP10-2008
Rev. J

3.10 Subtract Instrumental Polarization

The instrument and the telescope itself may introduce some foreground polarization to the data which must be removed
to determine the polarization from the astronomical source. The instrument team uses measurements of the sky to
characterize the introduced polarization in reduced Stokes parameters (𝑞 = 𝑄/𝐼 and 𝑢 = 𝑈/𝐼) for each filter band at
each pixel. The correction is then applied as

𝑄′ = 𝑄− 𝑞′𝐼

𝑈 ′ = 𝑈 − 𝑢′𝐼

and propagated to the associated error and covariance images as

𝜎′
𝑄 =

√︁
𝜎2
𝑄 + (𝑞′𝜎𝐼)2 + 2𝑞′𝜎𝑄𝐼

𝜎′
𝑈 =

√︁
𝜎2
𝑈 + (𝑢′𝜎𝐼)2 + 2𝑢′𝜎𝑈𝐼

𝜎𝑄′𝐼 = 𝜎𝑄𝐼 − 𝑞′𝜎2
𝐼

𝜎𝑈 ′𝐼 = 𝜎𝑈𝐼 − 𝑢′𝜎2
𝐼

𝜎𝑄′𝑈 ′ = −𝑢′𝜎𝑄𝐼 − 𝑞′𝜎𝑈𝐼 + 𝑞𝑢𝜎2
𝐼 .

The correction is expected to be good to within 𝑄/𝐼 < 0.6% and 𝑈/𝐼 < 0.6%.

3.11 Rotate Polarization Coordinates

The Stokes Q and U parameters, as calculated so far, reflect polarization angles measured in detector coordinates.
After the foreground polarization is removed, the parameters may then be rotated into sky coordinates. The pipeline
calculates a relative rotation angle, 𝛼, that accounts for the vertical position angle of the instrument, the initial angle
of the half-wave plate position, and an offset position that is different for each HAWC filter. It applies the correction to
the Q and U images with a standard rotation matrix, such that:

𝑄′ = 𝑐𝑜𝑠(𝛼)𝑄 + 𝑠𝑖𝑛(𝛼)𝑈

𝑈 ′ = 𝑠𝑖𝑛(𝛼)𝑄− 𝑐𝑜𝑠(𝛼)𝑈.

The errors and covariances become:

𝜎′
𝑄 =

√︁
(𝑐𝑜𝑠(𝛼)𝜎𝑄)2 + (𝑠𝑖𝑛(𝛼)𝜎𝑈)2 + 2𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛼)𝜎𝑄𝑈

𝜎′
𝑈 =

√︁
(𝑠𝑖𝑛(𝛼)𝜎𝑄)2 + (𝑐𝑜𝑠(𝛼)𝜎𝑈)2 − 2𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛼)𝜎𝑄𝑈

𝜎𝑄′𝐼 = 𝑐𝑜𝑠(𝛼)𝜎𝑄𝐼 + 𝑠𝑖𝑛(𝛼)𝜎𝑈𝐼

𝜎𝑈 ′𝐼 = 𝑠𝑖𝑛(𝛼)𝜎𝑄𝐼 − 𝑐𝑜𝑠(𝛼)𝜎𝑈𝐼

𝜎𝑄′𝑈 ′ = 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛼)(𝜎2
𝑄 − 𝜎2

𝑈) + (𝑠𝑖𝑛2(𝛼) − 𝑐𝑜𝑠2(𝛼))𝜎𝑄𝑈 .

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
13

SOF-US-HBK-OP10-2008
Rev. J

3.12 Correct for Atmospheric Opacity

In order to combine images taken under differing atmospheric conditions, the pipeline corrects the flux in each indi-
vidual file for the estimated atmospheric transmission during the observation, based on the altitude and zenith angle at
the time when the observation was obtained.

Atmospheric transmission values in each HAWC+ filter have been computed for a range of telescope elevations and
observatory altitudes (corresponding to a range of overhead precipitable water vapor values) using the ATRAN atmo-
spheric modeling code, provided to the SOFIA program by Steve Lord. The ratio of the transmission at each altitude
and zenith angle, relative to that at the reference altitude (41,000 feet) and reference zenith angle (45 degrees), has been
calculated for each filter and fit with a low-order polynomial. The ratio appropriate for the altitude and zenith angle
of each observation is calculated from the fit coefficients. The pipeline applies this relative opacity correction factor
directly to the flux in the Stokes I, Q, and U images, and propagates it into the corresponding error and covariance
images.

3.13 Calibrate Flux

The pipeline now converts the flux units from instrumental counts to physical units of Jansky per pixel (Jy/pixel). For
each filter band, the instrument team determines a calibration factor in counts/Jy/pixel appropriate to data that has been
opacity-corrected to the reference zenith angle and altitude.

The calibration factors are computed in a manner similar to that for another SOFIA instrument (FORCAST), taking into
account that HAWC+ is a bolometer, not a photon-counting device. Measured photometry is compared to the theoretical
fluxes of objects (standards) whose spectra are assumed to be known. The predicted fluxes in each HAWC+ passband
are computed by multiplying the model spectrum by the overall response curve of the telescope and instrument system
and integrating over the filter passband. For HAWC+, the standards used to date include Uranus, Neptune, Ceres, and
Pallas. The models for Uranus and Neptune were obtained from the Herschel project (see Mueller et al. 2016). Standard
thermal models are used for Ceres and Pallas. All models are scaled to match the distances of the objects at the time
of the observations. Calibration factors computed from these standards are then corrected by a color correction factor
based on the mean and pivot wavelengths of each passband, such that the output flux in the calibrated data product
is that of a nominal, flat spectrum source at the mean wavelength for the filter. See the FORCAST GO Handbook,
available from the SOFIA webpage, for more details on the calibration process.

Raw calibration factors are computed as above by the pipeline, for any observation marked as a flux standard (OB-
STYPE=STANDARD_FLUX), and are stored in the FITS headers of the output data product. The instrument team
generally combines these factors across a flight series, to determine a robust average value for each instrument config-
uration and mode. The overall calibration thus determined is expected to be good to within about 10%.

For science observations, the series-average calibration factor is directly applied to the flux in each of the Stokes I, Q,
and U images, and to their associated error and covariance images:

𝐼 ′ = 𝐼/𝑓

𝑄′ = 𝑄/𝑓

𝑈 ′ = 𝑈/𝑓

𝜎′
𝑄 = 𝜎𝑄/𝑓

𝜎′
𝑈 = 𝜎𝑄/𝑓

𝜎′
𝑄𝐼 = 𝜎𝑄𝐼/𝑓

2

𝜎′
𝑈𝐼 = 𝜎𝑈𝐼/𝑓

2

𝜎′
𝑄𝑈 = 𝜎𝑄𝑈/𝑓

2.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
14

https://www.sofia.usra.edu/science/proposing-and-observing/data-products/data-resources

SOF-US-HBK-OP10-2008
Rev. J

where f is the reference calibration factor. The systematic error on f is not propagated into the error planes, but it is
stored in the ERRCALF FITS header keyword. The calibration factor applied is stored in the CALFCTR keyword.

Note that for Chop-Nod imaging data, this factor is applied after the merge step, below.

3.14 Subtract Background

After chop and nod subtraction, some residual background noise may remain in the flux images. After flat correction,
some residual gain variation may remain as well. To remove these, the pipeline reads in all images in a reduction group,
and then iteratively performs the following steps:

• Smooth and combine the input Stokes I, Q, and U images

• Compare each Stokes I image (smoothed) to the combined map to determine any background offset or scaling

• Subtract the offset from the input (unsmoothed) Stokes I images; scale the input Stokes I, Q, and U images

• Compare each smoothed Stokes Q and U images to the combined map to determine any additional background
offset

• Subtract the Q and U offsets from the input Q and U images

The final determined offsets (𝑎𝐼 , 𝑎𝑄, 𝑎𝑈) and scales (𝑏) for each file are applied to the flux for each Stokes image as
follows:

𝐼 ′ = (𝐼 − 𝑎𝐼)/𝑏

𝑄′ = (𝑄− 𝑎𝑄)/𝑏

𝑈 ′ = (𝑈 − 𝑎𝑈)/𝑏

and are propagated into the associated error and covariance images appropriately.

3.15 Rebin Images

In polarimetry, it is sometimes useful to bin several pixels together to increase signal-to-noise, at the cost of decreased
resolution. The chop-nod pipeline provides an optional step to perform this binning on individual images, prior to
merging them together into a single map.

The Stokes I, Q, and U images are divided into blocks of a specified bin width, then each block is summed over. The
summed flux is scaled to account for missing pixels within the block, by the factor:

𝑓 ′ = 𝑓(𝑛𝑝𝑖𝑥/𝑛𝑣𝑎𝑙𝑖𝑑)

where 𝑛𝑝𝑖𝑥 is the number of pixels in a block, and 𝑛𝑣𝑎𝑙𝑖𝑑 is the number of valid pixels within the block. The error and
covariance images are propagated to match. The WCS keywords in the FITS header are also updated to match the new
data array.

By default, no binning is performed by the pipeline. The additional processing is generally performed only on request
for particular science cases.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
15

SOF-US-HBK-OP10-2008
Rev. J

3.16 Merge Images

All steps up until this point produce an output file for each input file taken at each telescope dither position, without
changing the pixelization of the input data. To combine files taken at separate locations into a single map, the pipeline
resamples the flux from each onto a common grid, defined such that North is up and East is to the left. First, the WCS
from each input file is used to determine the sky location of all the input pixels. Then, for each pixel in the output grid,
the algorithm considers all input pixels within a given radius that are not marked as bad pixels. It weights the input
pixels by a Gaussian function of their distance from the output grid point and, optionally, their associated errors. The
value at the output grid pixel is the weighted average of the input pixels within the considered window. The output grid
may subsample the input pixels: by default, there are 4 output pixels for each input pixel. For flux conservation, the
output flux is multiplied by the ratio of the output pixel area to the input pixel area.

The error maps output by this algorithm are calculated from the input variances for the pixels involved in each weighted
average. That is, the output fluxes from N input pixels are:

𝐼 ′ =

∑︀𝑁
𝑖 𝑤𝑖,𝐼𝐼𝑖
𝑤𝑡𝑜𝑡,𝐼

𝑄′ =

∑︀𝑁
𝑖 𝑤𝑖,𝑄𝑄𝑖

𝑤𝑡𝑜𝑡,𝑄

𝑈 ′ =

∑︀𝑁
𝑖 𝑤𝑖,𝑈𝑈𝑖

𝑤𝑡𝑜𝑡,𝑈

and the output errors and covariances are

𝜎′
𝐼 =

√︁∑︀𝑁
𝑖 (𝑤𝑖,𝐼𝜎𝑖,𝐼)2

𝑤𝑡𝑜𝑡,𝐼

𝜎′
𝑄 =

√︁∑︀𝑁
𝑖 (𝑤𝑖,𝑄𝜎𝑖,𝑄)2

𝑤𝑡𝑜𝑡,𝑄

𝜎′
𝑈 =

√︁∑︀𝑁
𝑖 (𝑤𝑖,𝑈𝜎𝑖,𝑈)2

𝑤𝑡𝑜𝑡,𝑈

𝜎′
𝑄𝐼 =

∑︀𝑁
𝑖 𝑤𝑖,𝑄𝑤𝑖,𝐼𝜎𝑖,𝑄𝐼

𝑤𝑡𝑜𝑡,𝑄𝑤𝑡𝑜𝑡,𝐼

𝜎′
𝑈𝐼 =

∑︀𝑁
𝑖 𝑤𝑖,𝑈𝑤𝑖,𝐼𝜎𝑖,𝑈𝐼

𝑤𝑡𝑜𝑡,𝑈𝑤𝑡𝑜𝑡,𝐼

𝜎′
𝑄𝑈 =

∑︀𝑁
𝑖 𝑤𝑖,𝑄𝑤𝑖,𝑈𝜎𝑖,𝑄𝑈

𝑤𝑡𝑜𝑡,𝑄𝑤𝑡𝑜𝑡,𝑈

where 𝑤𝑖 is the pixel weight and 𝑤𝑡𝑜𝑡 is the sum of the weights of all input pixels.

As of HAWC DRP v2.4.0, the distance-weighted input pixels within the fit radius may optionally be fit by a low-order
polynomial surface, rather than a weighted average. In this case, each output pixel value is the value of the local
polynomial fit, evaluated at that grid location. Errors and covariances are propagated similarly.

The output from this step is a single FITS file, containing a flux and error image for each of Stokes I, Q, and U, as well
as the Stokes covariance images. An image mask is also produced, which represents how many input pixels went into
each output pixel. Because of the weighting scheme, the values in this mask are not integers. A data table containing
demodulated data merged from all input tables is also attached to the file with extension name MERGED DATA.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
16

SOF-US-HBK-OP10-2008
Rev. J

3.17 Compute Vectors

Using the Stokes I, Q, and U images, the pipeline now computes the polarization percentage (𝑝) and angle (𝜃) and their
associated errors (𝜎) in the standard way. For the polarization angle 𝜃 in degrees:

𝜃 =
90

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛

(︁𝑈
𝑄

)︁
𝜎𝜃 =

90

𝜋(𝑄2 + 𝑈2)

√︁
(𝑈𝜎𝑄)2 + (𝑄𝜎𝑈)2 − 2𝑄𝑈𝜎𝑄𝑈 .

The percent polarization (𝑝) and its error are calculated as

𝑝 = 100

√︂(︁𝑄
𝐼

)︁2

+
(︁𝑈
𝐼

)︁2

𝜎𝑝 =
100

𝐼

√︃
1

(𝑄2 + 𝑈2)

[︁
(𝑄𝜎𝑄)2 + (𝑈𝜎𝑈)2 + 2𝑄𝑈𝜎𝑄𝑈

]︁
+

[︁(︁𝑄
𝐼

)︁2

+
(︁𝑈
𝐼

)︁2]︁
𝜎2
𝐼 − 2

𝑄

𝐼
𝜎𝑄𝐼 − 2

𝑈

𝐼
𝜎𝑈𝐼 .

The debiased polarization percentage (𝑝′)is also calculated, as:

𝑝′ =
√︁

𝑝2 − 𝜎2
𝑝.

Each of the 𝜃, 𝑝, and 𝑝′ maps and their error images are stored as separate extensions in the output from this step, which
is the final output from the pipeline for Nod-Pol data. This file will have 19 extensions, including the primary HDU,
with extension names, types, and numbers as follows:

• STOKES I: primary HDU, image, extension 0

• ERROR I: image, extension 1

• STOKES Q: image, extension 2

• ERROR Q: image, extension 3

• STOKES U: image, extension 4

• ERROR U: image, extension 5

• IMAGE MASK: image, extension 6

• PERCENT POL: image, extension 7

• DEBIASED PERCENT POL: image, extension 8

• ERROR PERCENT POL: image, extension 9

• POL ANGLE: image, extension 10

• ROTATED POL ANGLE: image, extension 11

• ERROR POL ANGLE: image, extension 12

• POL FLUX: image, extension 13

• ERROR POL FLUX: image, extension 14

• DEBIASED POL FLUX: image, extension 15

• MERGED DATA: table, extension 16

• POL DATA: table, extension 17

• FINAL POL DATA: table, extension 18

The final two extensions contain table representations of the polarization values for each pixel, as an alternate repre-
sentation of the 𝜃, 𝑝, and 𝑝′ maps. The FINAL POL DATA table (extension 18) is a subset of the POL DATA table
(extension 17), with data quality cuts applied.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
17

SOF-US-HBK-OP10-2008
Rev. J

4 Scan Reduction Algorithms

This section covers the main algorithms used to reduce Scan mode data. See the flowchart in Fig. 5 for an overview of
the iterative process. In this description, “channels” refer to detector pixels, and “frames” refer to time samples read
out from the detector pixels during the scan observation.

4.1 Signal Structure

Scan map reconstruction is based on the assumption that the measured data (𝑋𝑐𝑡) for detector 𝑐, recorded at time 𝑡, is
the superposition of various signal components and essential (not necessarily white) noise 𝑛𝑐𝑡:

𝑋𝑐𝑡 = 𝐷𝑐𝑡 + 𝑔(1),𝑐𝐶(1),𝑡 + ... + 𝑔(𝑛),𝑐𝐶(𝑛),𝑡 + 𝐺𝑐𝑀
𝑥𝑦
𝑐𝑡 𝑆𝑥𝑦 + 𝑛𝑐𝑡

We can model the measured detector timestreams via a number of appropriate parameters, such as 1/f drifts (𝐷𝑐𝑡), 𝑛
correlated noise components (𝐶(1),𝑡...𝐶(𝑛),𝑡) and channel responses to these (gains, 𝑔(1),𝑐...𝑔(𝑛),𝑐), and the observed
source structure (𝑆𝑥𝑦). We can derive statistically sound estimates (such as maximum-likelihood or robust estimates)
for these parameters based on the measurements themselves. As long as our model is representative of the physical
processes that generate the signals, and sufficiently complete, our derived parameters should be able to reproduce the
measured data with the precision of the underlying limiting noise.

Below is a summary of the assumed principal model parameters, in general:

• 𝑋𝑐𝑡: The raw timestream of channel c, measured at time t.

• 𝐷𝑐𝑡: The 1/f drift value of channel c at time t.

• 𝑔(1),𝑐...𝑔(𝑛),𝑐: Channel 𝑐 gain (response) to correlated signals (for modes 1 through 𝑛).

• 𝐶(1),𝑡...𝐶(𝑛),𝑡: Correlated signals (for modes 1 through 𝑛) at time 𝑡.

• 𝐺𝑐: The point source gain of channel 𝑐

• 𝑀𝑥𝑦
𝑐𝑡 : Scanning pattern, mapping a sky position {𝑥, 𝑦} into a sample of channel 𝑐 at time 𝑡.

• 𝑆𝑥𝑦: Actual 2D source flux at position {𝑥, 𝑦}.

• 𝑛𝑐𝑡: Essential limiting noise in channel c at time t.

4.2 Sequential Incremental Modeling and Iterations

The pipeline’s approach is to solve for each term separately, and sequentially, rather than trying to do a brute-force matrix
inversion in a single step. Sequential modeling works on the assumption that each term can be considered independently
from one another. To a large degree this is justified, as many of the signals produce more or less orthogonal imprints
in the data (e.g. you cannot easily mistake correlated sky response seen by all channels with a per-channel DC offset).
As such, from the point of view of each term, the other terms represent but an increased level of noise. As the terms
all take turns in being estimated (usually from bright to faint) this model confusion “noise” goes away, especially with
multiple iterations.

Even if the terms are not perfectly orthogonal to one another, and have degenerate flux components, the sequential
approach handles this degeneracy naturally. Degenerate fluxes between a pair of terms will tend to end up in the term
that is estimated first. Thus, the ordering of the estimation sequence provides a control on handling degeneracies in a
simple and intuitive manner.

A practical trick for efficient implementation is to replace the raw timestream with the unmodeled residuals 𝑋𝑐𝑡 → 𝑅𝑐𝑡

and let modeling steps produce incremental updates to the model parameters. Every time a model parameter is updated,
its incremental imprint is removed from the residual timestream (a process we shall refer to as synchronization).

With each iteration, the incremental changes to the parameters become more insignificant, and the residual will ap-
proach the limiting noise of the measurement.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
18

SOF-US-HBK-OP10-2008
Rev. J

Fig. 5: Scan data reduction flowchart

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
19

SOF-US-HBK-OP10-2008
Rev. J

4.3 Initialization and Scan Validation

Prior to beginning iterative solution for the model components, the pipeline reads in the raw FITS table, assigns posi-
tional offsets to every detector channel, and sky coordinates to every time frame in the scan.

The input timestream is then checked for inconsistencies. For example, HAWC data is prone to discontinuous jumps in
flux levels. The pipeline will search the timestream for flux jumps, and flag or fix jump-related artifacts as necessary.
The pipeline also checks for gaps in the astrometry data in the timestream, gyro drifts over the course of the observation,

By default, the pipeline also clips extreme scanning velocities using, by default, a set minimum and maximum value
for each instrument. The default settings still include a broad range of speeds, so images can sometimes be distorted
by low or high speeds causing too little or too much exposure on single pixels. To fix this, the pipeline can optionally
remove frames from the beginning or end of the observation, or sigma-clip the telescope speeds to a tighter range.

The size of the output source map is determined from the mapped area on the sky, and a configurable output pixel grid
size. This map is updated on each iteration, with the derived source model.

Gains for all detector pixels are initialized with a reference gain map, derived from earlier observations. These initial
gains serve as a starting place for the iterative model and allow for flagging and removal of channels known to be bad
prior to iterating.

4.4 DC Offset and 1/f Drift Removal

For 1/f drifts, consider only the term:

𝑅𝑐𝑡 ≈ 𝛿𝐷𝑐𝜏

where 𝛿𝐷𝑐𝜏 is the 1/f channel drift value for 𝑡 between 𝜏 and 𝜏 + 𝑇 , for a 1/f time window of 𝑇 samples. That is,
we simply assume that the residuals are dominated by an unmodeled 1/f drift increment 𝛿𝐷𝑐𝜏 . Note that detector DC
offsets can be treated as a special case with 𝜏 = 0, and 𝑇 equal to the number of detector samples in the analysis.

We can construct a 𝜒2 measure, as:

𝜒2 =

𝑡=𝜏+𝑇∑︁
𝑐,𝑡=𝜏

𝑤𝑐𝑡(𝑅𝑐𝑡 − 𝛿𝐷𝑐𝑡)
2

where 𝑤𝑐𝑡 = 𝜎−2
𝑐𝑡 is the proper noise-weight associated with each datum. The pipeline furthermore assumes that the

noise weight of every sample 𝑤𝑐𝑡 can be separated into the product of a channel weight 𝑤𝑐 and a time weight 𝑤𝑡,
i.e. 𝑤𝑐𝑡 = 𝑤𝑐 · 𝑤𝑡. This assumption is identical to that of separable noise (𝜎𝑐𝑡 = 𝜎𝑐 · 𝜎𝑡). Then, by setting the 𝜒2

minimizing condition 𝜕𝜒2/𝜕(𝛿𝐷𝑐𝑡) = 0, we arrive at the maximum-likelihood incremental update:

𝛿𝐷𝑐𝜏 =

𝜏+𝑇∑︀
𝑡=𝜏

𝑤𝑡𝑅𝑐𝑡

𝜏+𝑇∑︀
𝑡=𝜏

𝑤𝑡

Note that each sample (𝑅𝑐𝑡) contributes a fraction:

𝑝𝑐𝑡 = 𝑤𝑡/

𝜏+𝑇∑︁
𝑡=𝜏

𝑤𝑡

to the estimate of the single parameter 𝛿𝐷𝑐𝜏 . In other words, this is how much that parameter is dependent on each
data point. Above all, 𝑝𝑐𝑡 is a fair measure of the fractional degrees of freedom lost from each datum, due to modeling
of the 1/f drifts. We will use this information later, when estimating proper noise weights.

Note, also, that we may replace the maximum-likelihood estimate for the drift parameter with any other statistically
sound estimate (such as a weighted median), and it will not really change the dependence, as we are still measuring the

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
20

SOF-US-HBK-OP10-2008
Rev. J

same quantity, from the same data, as with the maximum-likelihood estimate. Therefore, the dependence calculation
remains a valid and fair estimate of the degrees of freedom lost, regardless of what statistical estimator is used.

The removal of 1/f drifts must be mirrored in the correlated signals also if gain solutions are to be accurate.

4.5 Correlated Noise Removal and Gain Estimation

For the correlated noise (mode 𝑖), we shall consider only the term with the incremental signal parameter update:

𝑅𝑐𝑡 = 𝑔(𝑖),𝑐𝛿𝐶(𝑖),𝑡 + ...

Initially, we can assume 𝐶(𝑖),𝑡 as well as 𝑔(𝑖),𝑐 = 1, if better values of the gain are not independently known at the start.
Accordingly, the 𝜒2 becomes:

𝜒2 =
∑︁
𝑐

𝑤𝑐𝑡(𝑅𝑐𝑡 − 𝑔(𝑖),𝑐𝛿𝐶(𝑖),𝑡)
2.

Setting the 𝜒2 minimizing condition with respect to 𝛿𝐶(𝑖),𝑡 yields:

𝛿𝐶(𝑖),𝑡 =

∑︀
𝑐
𝑤𝑐𝑔(𝑖),𝑐𝑅𝑐𝑡∑︀
𝑐
𝑤𝑐𝑔2(𝑖),𝑐

.

The dependence of this parameter on 𝑅𝑐𝑡 is:

𝑝𝑐𝑡 = 𝑤𝑐𝑔
2
(𝑖),𝑐/

∑︁
𝑐

𝑤𝑐𝑔
2
(𝑖),𝑐

After we update 𝐶(𝑖) (the correlated noise model for mode 𝑖) for all frames 𝑡, we can update the gain response as well
in an analogous way, if desired. This time, consider the residuals due to the unmodeled gain increment:

𝑅𝑐𝑡 = 𝛿𝑔(𝑖),𝑐𝐶(𝑖),𝑡 + ...

and

𝜒2 =
∑︁
𝑡

𝑤𝑐𝑡(𝑅𝑐𝑡 − 𝛿𝑔(𝑖),𝑐𝐶(𝑖),𝑡)
2

Minimizing it with respect to 𝛿𝑔(𝑖),𝑐 yields:

𝛿𝑔(𝑖),𝑐 =

∑︀
𝑡
𝑤𝑡𝐶(𝑖),𝑡𝑅𝑐𝑡∑︀
𝑡
𝑤𝑡𝐶2

(𝑖),𝑡

which has a parameter dependence:

𝑝𝑐𝑡 = 𝑤𝑡𝐶
2
(𝑖),𝑡/

∑︁
𝑡

𝑤𝑡𝐶
2
(𝑖),𝑡

Because the signal 𝐶𝑡 and gain 𝑔𝑐 are a product in our model, scaling 𝐶𝑡 by some factor 𝑋 , while dividing 𝑔𝑐 by the
same factor will leave the product intact. Therefore, our solutions for 𝐶𝑡 and 𝑔𝑐 are not unique. To remove this inherent
degeneracy, it is practical to enforce a normalizing condition on the gains, such that the mean gain 𝜇(𝑔𝑐) = 1, by
construct. The pipeline uses a robust mean measure for gain normalization to produce reasonable comparisons under
various pathologies, such as when most gains are zero, or when a few gains are very large compared to the others.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
21

SOF-US-HBK-OP10-2008
Rev. J

4.6 Noise Weighting

Once we model out the dominant signal components, such that the residuals are starting to approach a reasonable level
of noise, we can turn our attention to determining proper noise weights. In its simplest form, we can determine the
weights based on the mean observed variance of the residuals, normalized by the remaining degrees of freedom in the
data:

𝑤𝑐 = 𝜂𝑐
𝑁(𝑡),𝑐 − 𝑃𝑐∑︀

𝑡
𝑤𝑡𝑅2

𝑐𝑡

where 𝑁(𝑡),𝑐 is the number of unflagged data points (time samples) for channel 𝑐, and 𝑃𝑐 is the total number of pa-
rameters derived from channel 𝑐. The scalar value 𝜂𝑐 is the overall spectral filter pass correction for channel 𝑐, which
is 1 if the data was not spectrally filtered, and 0 if the data was maximally filtered (i.e. all information is removed).
Thus typical 𝜂𝑐 values will range between 0 and 1 for rejection filters, or can be greater than 1 for enhancing filters.
We determine time-dependent weights as:

𝑤𝑡 =
𝑁(𝑐),𝑡 − 𝑃𝑡∑︀

𝑐
𝑤𝑐𝑅2

𝑐𝑡

Similar to the above, here 𝑁(𝑐),𝑡 is the number of unflagged channel samples in frame 𝑡, while 𝑃𝑡 is the total number of
parameters derived from frame 𝑡. Once again, it is practical to enforce a normalizing condition of setting the mean time
weight to unity, i.e. 𝜇(𝑤𝑡) = 1. This way, the channel weights 𝑤𝑐 have natural physical weight units, corresponding to
𝑤𝑐 = 1/𝜎2

𝑐 .

The total number of parameters derived from each channel, and frame, are simply the sum, over all model parameters
𝑚, of all the parameter dependencies 𝑝𝑐𝑡 we calculated for them. That is,

𝑃𝑐 =
∑︁
𝑚

∑︁
𝑡

𝑝(𝑚),𝑐𝑡

and

𝑃𝑡 =
∑︁
𝑚

∑︁
𝑐

𝑝(𝑚),𝑐𝑡

Getting these lost-degrees-of-freedom measures right is critical for the stability of the solutions in an iterated frame-
work. Even slight biases in 𝑝𝑐𝑡 can grow exponentially with iterations, leading to divergent solutions, which may
manifest as over-flagging or as extreme mapping artifacts.

4.7 Despiking

After deriving fair noise weights, we can try to identify outliers in the data (glitches and spikes) and flag them for
removal from further analysis. By default, the pipeline uses differential deviations between neighboring data points to
identify outlier values.

4.8 Spectral Conditioning

Ideally, detectors would have featureless white noise spectra (at least after the 1/f noise is treated by the drift removal).
In practice, that is rarely the case. Spectral features are bad because (a) they produce mapping features/artifacts (such
as “striping”), and because (b) they introduce a covariant noise term between map points that is not easily represented
by the output. It is therefore desirable to “whiten” the residual noise whenever possible, to mitigate both these effects.

Noise whitening starts with measuring the effective noise spectrum in a temporal window, significantly shorter than the
integration on which it is measured. In the pipeline, the temporal window is designed to match the 1/f stability timescale
𝑇 chosen for the drift removal, since the drift removal will wipe out all features on longer timescales. With the use

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
22

SOF-US-HBK-OP10-2008
Rev. J

of such a spectral window, we may derive a lower-resolution averaged power-spectrum for each channel. The pipeline
then identifies the white noise level, either as the mean (RMS) scalar amplitude over a specified range of frequencies,
or automatically, over an appropriate frequency range occupied by the point-source signal as a result of the scanning
motion.

Then, the pipeline will look for significant outliers in each spectral bin, above a specified level (and optimally below a
critical level too), and create a real-valued spectral filter profile 𝜑𝑐𝑓 for each channel 𝑐 and frequency bin 𝑓 to correct
these deviations.

There are other filters that can be applied also, such as notch filters, or a motion filter to reject responses synchronous
to the dominant telescope motion. In the end, every one of these filters is represented by an appropriate scalar filter
profile 𝜑𝑐𝑓 , so the discussion remains unchanged. Only the whitening filter is used by default for HAWC data.

Once a filter profile is determined, we apply the filter by first calculating a rejected signal:

𝜚𝑐𝑡 = 𝐹−1[(1 − 𝜑𝑐𝑓)�̂�𝑐𝑓]

where �̂�𝑐𝑓 is the Fourier transform of 𝑅𝑐𝑡, using the weighting function provided by 𝑤𝑡, and 𝐹−1 denotes the inverse
Fourier Transform from the spectral domain back into the timestream. The rejected signals are removed from the
residuals as:

𝑅𝑐𝑡 → 𝑅𝑐𝑡 − 𝜚𝑐𝑡

The overall filter pass 𝜂𝑐 for channel 𝑐, can be calculated as:

𝜂𝑐 =

∑︀
𝑓

𝜑2
𝑐𝑓

𝑁𝑓

where 𝑁𝑓 is the number of spectral bins in the profile 𝜑𝑐𝑓 . The above is simply a measure of the white-noise power
fraction retained by the filter, which according to Parseval’s theorem, is the same as the power fraction retained in the
timestream, or the scaling of the observed noise variances as a result of filtering.

4.9 Map Making

The mapping algorithm for the output source model implements a nearest-pixel method, whereby each data point is
mapped entirely into the map pixel that falls nearest to the given detector channel 𝑐, at a given time 𝑡. Here,

𝛿𝑆𝑥𝑦 =

∑︀
𝑐𝑡

𝑀 𝑐𝑡
𝑥𝑦𝑤𝑐𝑤𝑡κ𝑐𝐺𝑐𝑅𝑐𝑡∑︀

𝑐𝑡
𝑀 𝑐𝑡

𝑥𝑦𝑤𝑐𝑤𝑡κ2
𝑐𝐺

2
𝑐

where 𝑀 𝑐𝑡
𝑥𝑦 associates each sample {𝑐, 𝑡} uniquely with a map pixel {𝑥, 𝑦}, and is effectively the transpose of the

mapping function defined earlier. κ𝑐 is the point-source filtering (pass) fraction of the pipeline. It can be thought of as
a single scalar version of the transfer function. Its purpose is to measure how isolated point-source peaks respond to
the various reduction steps, and correct for it. When done correctly, point source peaks will always stay perfectly cross-
calibrated between different reductions, regardless of what reduction steps were used in each case. More generally, a
reasonable quality of cross-calibration (to within 10%) extends to compact and slightly extended sources (typically up
to about half of the field-of-view (FoV) in size). While corrections for more extended structures (≥ FoV) are possible
to a certain degree, they come at the price of steeply increasing noise at the larger scales.

The map-making algorithm should skip over any data that is unsuitable for quality map-making (such as too-fast scan-
ning that may smear a source). For formal treatment, we assume that 𝑀𝑥𝑦

𝑐𝑡 = 0 for any troublesome data.

Calculating the precise dependence of each map point 𝑆𝑥𝑦 on the timestream data 𝑅𝑐𝑡 is computationally costly to the
extreme. Instead, the pipeline gets by with the approximation:

𝑝𝑐𝑡 ≈ 𝑁𝑥𝑦 ·
𝑤𝑡∑︀
𝑡
𝑤𝑡

· 𝑤𝑐κ2
𝑐𝐺𝑐∑︀

𝑐
𝑤𝑐κ2

𝑐𝐺
2
𝑐

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
23

SOF-US-HBK-OP10-2008
Rev. J

This approximation is good as long as most map points are covered with a representative collection of pixels, and as
long as the pixel sensitivities are more or less uniformly distributed over the field of view.

We can also calculate the flux uncertainty in the map 𝜎𝑥𝑦 at each point {𝑥, 𝑦} as:

𝜎2
𝑥𝑦 = 1/

∑︁
𝑐𝑡

𝑀 𝑐𝑡
𝑥𝑦𝑤𝑐𝑤𝑡κ2

𝑐𝐺
2
𝑐

Source models are first derived from each input scan separately. These may be despiked and filtered, if necessary,
before added to the global increment with an appropriate noise weight (based on the observed map noise) if source
weighting is desired.

Once the global increment is complete, we can add it to the prior source model 𝑆𝑟(0)
𝑥𝑦 and subject it to further con-

ditioning, especially in the intermediate iterations. Conditioning operations may include smoothing, spatial filtering,
redundancy flagging, noise or exposure clipping, signal-to-noise blanking, or explicit source masking. Once the model
is processed into a finalized 𝑆′

𝑥𝑦 , we synchronize the incremental change 𝛿𝑆′
𝑥𝑦 = 𝑆′

𝑥𝑦 − 𝑆
𝑟(0)
𝑥𝑦 to the residuals:

𝑅𝑐𝑡 → 𝑅𝑐𝑡 −𝑀𝑥𝑦
𝑐𝑡 (𝛿𝐺𝑐𝑆

𝑟(0)
𝑥𝑦 + 𝐺𝑐𝛿𝑆

′
𝑥𝑦)

Note, again, that 𝛿𝑆′
𝑥𝑦 ̸= 𝛿𝑆𝑥𝑦 . That is, the incremental change in the conditioned source model is not the same as the

raw increment derived above. Also, since the source gains 𝐺𝑐 may have changed since the last source model update, we
must also re-synchronize the prior source model 𝑆(0)

𝑥𝑦 with the incremental source gain changes 𝛿𝐺𝑐 (first term inside
the brackets).

The pipeline operates under the assumption that the point-source gains 𝐺𝑐 of the detectors are closely related to the
observed sky-noise gains 𝑔𝑐 derived from the correlated noise for all channels. Specifically, it treats the point-source
gains as the product:

𝐺𝑐 = 𝜀𝑐𝑔𝑐𝑔𝑠𝑒
−𝜏

where 𝜀𝑐 is the point-source coupling efficiency. It measures the ratio of point-source gains to sky-noise gains (or
extended source gains). Generally, the pipeline will assume 𝜀𝑐 = 1, unless these values are measured and loaded
during the initial scan validation sequence.

Optionally, the pipeline can also derive 𝜀𝑐 from the observed response to a source structure, provided the scan pattern is
sufficient to move significant source flux over all detectors. The source gains also include a correction for atmospheric
attenuation, for an optical depth 𝜏 , in-band and in the line of sight.

4.10 Point-Source Flux Corrections

We mentioned point-source corrections in the section above; here, we explain how these are calculated. First, consider
drift removal. Its effect on point source fluxes is a reduction by a factor:

κ𝐷,𝑐 ≈ 1 − 𝜏𝑝𝑛𝑡
𝑇

In terms of the 1/f drift removal time constant 𝑇 and the typical point-source crossing time 𝜏𝑝𝑛𝑡. Clearly, the effect of
1/f drift removal is smaller the faster one scans across the source, and becomes negligible when 𝜏𝑝𝑛𝑡 ≪ 𝑇 .

The effect of correlated-noise removal, over some group of channels of mode 𝑖, is a little more complex. It is calculated
as:

κ(𝑖),𝑐 = 1 − 1

𝑁(𝑖),𝑡
(𝑃(𝑖),𝑐 +

∑︁
𝑘

Ω𝑐𝑘𝑃(𝑖),𝑘)

where Ω𝑐𝑘 is the overlap between channels 𝑐 and 𝑘. That is, Ω𝑐𝑘 is the fraction of the point source peak measured by
channel 𝑐 when the source is centered on channel 𝑘. 𝑁(𝑖),𝑡 is the number of correlated noise-samples that have been

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
24

SOF-US-HBK-OP10-2008
Rev. J

derived for the given mode (usually the same as the number of time samples in the analysis). The correlated model’s
dependence on channel 𝑐 is:

𝑃(𝑖),𝑐 =
∑︁
𝑡

𝑝(𝑖),𝑐𝑡

Finally, the point-source filter correction due to spectral filtering is calculated based on the average point-source spec-
trum produced by the scanning. Gaussian source profiles with spatial spread 𝜎𝑥 ≈ 𝐹𝑊𝐻𝑀/2.35 produce a typical
temporal spread 𝜎𝑡 ≈ 𝜎𝑥/𝑣, in terms of the mean scanning speed 𝑣. In frequency space, this translates to a Gaussian
frequency spread of 𝜎𝑓 = (2𝜋𝜎𝑡)

−1, and thus a point-source frequency profile of:

Ψ𝑓 ≈ 𝑒−𝑓2/(2𝜎2
𝑓)

More generally, Ψ𝑓 may be complex-valued (asymmetric beam). Accordingly, the point-source filter correction due to
filtering with 𝜑𝑓 is generally:

κ𝜑,𝑐 ≈

∑︀
𝑓

𝑅𝑒(𝜑𝑓Ψ𝑓𝜑𝑓)∑︀
𝑓

𝑅𝑒(Ψ𝑓)

The compound point source filtering effect from 𝑚 model components is the product of the individual model correc-
tions, i.e.:

κ𝑐 =
∏︁
𝑚

κ(𝑚),𝑐

4.11 Scan Map Output

Since the Scan mode algorithms are iterative, there are no well-defined intermediate products that may be written to
disk. For Scan mode data, the pipeline takes as input a set of raw Level 0 HAWC FITS files, described in the Prepare
section, and writes as output a single FITS file per file group, saved with PRODTYPE = scanmap (file name code
SMP). These files contain an image of the source map in units of detector counts, and several other extensions.

The flux calibrated map file is saved as the calibrate product type (CAL). The primary HDU in the CAL file contains
the flux image in units of Jy/pixel. The first extension (EXTNAME = EXPOSURE) contains an image of the nominal
exposure time in seconds at each point in the map. The second extension (EXTNAME = NOISE) holds the error image
corresponding to the flux map, and the third extension (EXTNAME = S/N) is the signal-to-noise ratio of the flux to the
error image. The fourth and further extensions contain binary tables of data, one for each input scan.

5 Scan-Pol Reduction Algorithms

Scanning polarimetry reductions are a hybrid of the the Nod-Pol and Scan reduction algorithms, described above.

Scan-Pol observations are performed in a sequence of four scans, where each scan has a different HWP position angle in
the following sequence: 5 degrees, 50 degrees, 27.5 degrees, and 72.5 degrees. This sequence is called a ‘set’ hereafter.
The pipeline sorts observations into sets and runs the scan map reconstruction algorithm on each set, following the
procedure in Scan Reduction Algorithms. For Scan-Pol observations, the pipeline produces two images per scan per
HWP angle associated with the R and T arrays. Thus, for a single set, 8 images are generated, one for each of R0 and
T0 at each angle. The pipeline creates all maps in the same output coordinate system and pixel scale, so that they are
all registered to each other.

Since the scan map step sets the background level independently for each scan image from the median of the full map,
there may be inconsistencies in the zero-level between the images, if there is significant diffuse emission across the
map. In this case, the pipeline may optionally correct the zero-level in each image by identifying a sky region with

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
25

SOF-US-HBK-OP10-2008
Rev. J

no emission, and subtracting the median level in this region from each image. The same region is used for each HWP
angle and subarray, so that all images are set independently to a common zero level.

After zero-level correction, the R and T arrays are directly added and subtracted at each HWP angle, and combined as
described above to generate Stokes I, Q, and U images (the Compute Stokes step). The output data format is the same
as for the stokes product for the Nod-Pol pipeline.

After Stokes calculation, the following steps are also performed, in the way described above for the Nod-Pol pipeline:

• Subtract Instrumental Polarization

• Rotate Polarization Coordinates

• Correct for Atmospheric Opacity

• Merge Images

• Compute Vectors

Note that the scan map pipeline step performs opacity and background level corrections on individual scans and re-
samples data into sky coordinates with full WCS corrections, as part of its standard processing, so these steps from the
Nod-Pol pipeline are not applied.

The final output product is a polarization map, the same as is produced by the Nod-Pol pipeline.

6 Other Resources

For more information on the code or algorithms used in the HAWC DRP pipeline, see the following documents:

• Far-infrared polarimetry analysis: Hildebrand et. al. 2000 PASP, 112, 1215

• DRP infrastructure and image viewer: Berthoud, M. 2013 ADASS XXII, 475, 193

The scan map reconstruction algorithms are based on a Java pipeline called CRUSH. For more information, see:

• CRUSH paper: Kovács, A. 2008, Proc. SPIE, 7020, 45

• CRUSH thesis: Kovács, A. 2006, PhD Thesis, Caltech

• Online documentation: http://www.sigmyne.com/crush/

Part IV

Data Products

7 File names

Output files from the HAWC pipeline are named according to the convention:

FILENAME = F[flight]_HA_[mode]_[aorid]_[spectel]_[type]_[fn1[-fn2]].fits

where flight is the SOFIA flight number, HA indicates the instrument (HAWC+), and mode is either IMA for imag-
ing observations, POL for polarization observations, or CAL for diagnostic data. The aorid indicates the SOFIA
program and observation number; spectel indicates the filter/band and the HWP setting. The type is a three-letter
identifier for the pipeline product type, and fn1 and fn2 are the first and last raw file numbers that were com-
bined to produce the output product. For example, a polarization map data product with AOR-ID 81_0131_04,
derived from files 5 to 6 of flight 295, taken in Band A with HWP in the A position would have the filename

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
26

http://iopscience.iop.org/article/10.1086/316613
http://adsabs.harvard.edu/abs/2013ASPC..475..193B
http://adsabs.harvard.edu/abs/2008SPIE.7020E..45K
http://adsabs.harvard.edu/abs/2006PhDT........28K
http://www.sigmyne.com/crush/

SOF-US-HBK-OP10-2008
Rev. J

F0295_HA_POL_81013104_HAWAHWPA_PMP_005-006.fits. See the tables below for a list of all possible values
for the three-letter product type.

8 Data format

Most HAWC data is stored in FITS files, conforming to the FITS standard (Pence et al. 2010). Each FITS file contains a
primary Header Data Unit (HDU) which may contain the most appropriate image data for that particular data reduction
level. Most files have additional data stored in HDU image or table extensions. All keywords describing the file are
in the header of the primary HDU. Each HDU also has a minimal header and is identified by the EXTNAME header
keyword. The algorithm descriptions, above, give more information about the content of each extension.

9 Pipeline products

The following tables list all intermediate and final products that may be generated by the HAWC pipeline, in the order
in which they are produced for each mode. The product type is stored in the primary header, under the keyword
PRODTYPE. By default, for Nod-Pol mode, the demodulate, opacity, calibrate, merge, and polmap products are saved.
For Chop-Nod mode, the demodulate, opacity, merge, and calibrate products are saved. For Scan mode, the scanmap
and calibrate products are saved. For Scan-Pol mode, the scanmappol, calibrate, merge, and polmap products are
saved.

For polarization data, the pipeline also generates two auxiliary products: a polarization map image in PNG format, with
polarization vectors plotted over the Stokes I image, and a polarization vector file in DS9 region format, for displaying
with FITS images. These products are alternate representations of the data in the FINAL POL DATA table in the
polarization map (PMP) FITS file. Similarly, for imaging data, a PNG quick-look preview image is generated as a final
step in the pipeline. These auxiliary products may be distrubuted to observers separately from the FITS file products.

Data products that contain multiple AORs or that contain observations from multiple flights are referred to as multi-
mission products. When multi-mission data are processed and stored in the database, they replace the corresponding
single-mission/single-AOR data files. This process usually results in fewer data files for a project. For HAWC+, the
following data products can be multi-mission:

• imaging: calibrate (CAL)

• polarimetry: merge (MRG), polmap (PMP).

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
27

SOF-US-HBK-OP10-2008
Rev. J

Table 1: Nod-Pol mode intermediate and final pipeline data products
Step Description PROD-

TYPE
PROC-
STAT

Identi-
fier

Saved

Make Flat Flat generated from Int. Cal file obsflat LEVEL_2 OFT Y
Demodulate Chops subtracted demodulate LEVEL_1 DMD Y
Flat Correct Flat field correction applied flat LEVEL_2 FLA N
Align Arrays R array shifted to T array shift LEVEL_2 SFT N
Split Images Data split by nod, HWP split LEVEL_2 SPL N
Combine Images Chop cycles combined combine LEVEL_2 CMB N
Subtract Beams Nod beams subtracted nodpolsub LEVEL_2 NPS N
Compute Stokes Stokes parameters calculated stokes LEVEL_2 STK N
Update WCS WCS added to header wcs LEVEL_2 WCS N
Subtract IP Instrumental polarization removed ip LEVEL_2 IPS N
Rotate Coordinates Polarization angle corrected to sky rotate LEVEL_2 ROT N
Correct Opacity Corrected for atmospheric opacity opacity LEVEL_2 OPC Y
Calibrate Flux Flux calibrated to physical units calibrate LEVEL_3 CAL Y
Subtract Background Residual background removed bgsubtract LEVEL_3 BGS N
Bin Pixels Pixels rebinned to increase S/N binpixels LEVEL_3 BIN N
Merge Images Dithers merged to a single map merge LEVEL_3 MRG Y
Compute Vectors Polarization vectors calculated polmap LEVEL_4 PMP Y

Table 2: Chop-Nod mode intermediate and final pipeline data products
Step Description PRODTYPE PROCSTAT Identifier Saved
Make Flat Flat generated from Int.Cal file obsflat LEVEL_2 OFT Y
Demodulate Chops subtracted demodulate LEVEL_1 DMD Y
Flat Correct Flat field correction applied flat LEVEL_2 FLA N
Align Arrays R array shifted to T array shift LEVEL_2 SFT N
Split Images Data split by nod, HWP split LEVEL_2 SPL N
Combine Images Chop cycles combined combine LEVEL_2 CMB N
Subtract Beams Nod beams subtracted nodpolsub LEVEL_2 NPS N
Compute Stokes Stokes parameters calculated stokes LEVEL_2 STK N
Update WCS WCS added to header wcs LEVEL_2 WCS N
Correct Opacity Corrected for atmospheric opacity opacity LEVEL_2 OPC Y
Subtract Background Residual background removed bgsubtract LEVEL_2 BGS N
Bin Pixels Pixels rebinned to increase S/N binpixels LEVEL_2 BIN N
Merge Images Dithers merged to single map merge LEVEL_2 MRG Y
Calibrate Flux Flux calibrated to physical units calibrate LEVEL_3 CAL Y

Table 3: Scan mode intermediate and final pipeline data products
Step Description PRODTYPE PROCSTAT Identifier Saved
Construct Scan Map Source model iteratively derived scanmap LEVEL_2 SMP Y
Calibrate Flux Flux calibrated to physical units calibrate LEVEL_3 CAL Y

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
28

SOF-US-HBK-OP10-2008
Rev. J

Table 4: Scan-Pol mode intermediate and final pipeline data products
Step Description PRODTYPE PROCSTAT Identifier Saved
Construct Scan Map Source model iteratively derived scanmappol LEVEL_2 SMP Y
Compute Stokes Stokes parameters calculated stokes LEVEL_2 STK N
Subtract IP Instrumental polarization removed ip LEVEL_2 IPS N
Rotate Coordinates Polarization angle corrected to sky rotate LEVEL_2 ROT N
Calibrate Flux Flux calibrated to physical units calibrate LEVEL_3 CAL Y
Merge Images HWP sets merged to single map merge LEVEL_3 MRG Y
Compute Vectors Polarization vectors calculated polmap LEVEL_4 PMP Y

Part V

Grouping Level 0 Data for Processing
In order for the pipeline to successfully reduce a group of HAWC+ data together, all input data must share a common
instrument configuration and observation mode, as well as target and filter band and HWP setting. These requirements
translate into a set of FITS header keywords that must match in order for a set of data to be grouped together. These
keyword requirements are summarized in the table below, for imaging and polarimetry data.

Table 5: Grouping Criteria for Imaging and Polarimetry Modes
Mode Keyword Data Type Match Criterion
All OBSTYPE string exact
All FILEGPID string exact
All INSTCFG string exact
All INSTMODE string exact
All SPECTEL1 string exact
All SPECTEL2 string exact
All PLANID string exact
All NHWP float exact
Imaging only SCNPATT string exact
Imaging only CALMODE string exact

Part VI

Configuration and Execution

10 Installation

The HAWC pipeline is written entirely in Python. The pipeline is platform independent and has been tested on Linux,
Mac OS X, and Windows operating systems. Running the pipeline requires a minimum of 16GB RAM, or equivalent-
sized swap file.

The pipeline is comprised of six modules within the sofia_redux package: sofia_redux.instruments.
hawc, sofia_redux.pipeline, sofia_redux.calibration, sofia_redux.scan, sofia_redux.toolkit, and
sofia_redux.visualization. The hawc module provides the data processing algorithms specific to HAWC, with

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
29

SOF-US-HBK-OP10-2008
Rev. J

supporting libraries from the calibration, scan, toolkit, and visualization modules. The pipeline module
provides interactive and batch interfaces to the pipeline algorithms.

10.1 External Requirements

To run the pipeline for any mode from the Redux interface, Python 3.8 or higher is required, as well as the following
packages: astropy, astroquery, bottleneck, configobj, cycler, dill, joblib, matplotlib, numba, numpy, pandas, photutils,
scikit-image, scikit-learn, and scipy.

Some display functions for the graphical user interface (GUI) additionally require the PyQt5, pyds9, and regions pack-
ages. All required external packages are available to install via the pip or conda package managers. See the Anaconda
environment file (environment.yml), or the pip requirements file (requirements.txt) distributed with sofia_redux for
up-to-date version requirements.

Running the pipeline’s interactive display tools also requires an installation of SAO DS9 for FITS image display. See
http://ds9.si.edu/ for download and installation instructions. The ds9 executable must be available in the PATH envi-
ronment variable for the pyds9 interface to be able to find and control it. Please note that pyds9 is not available on the
Windows platform.

10.2 Source Code Installation

The source code for the HAWC pipeline maintained by the SOFIA Data Processing Systems (DPS) team can be obtained
directly from the DPS, or from the external GitHub repository. This repository contains all needed configuration files,
auxiliary files, and Python code to run the pipeline on HAWC data in any observation mode.

After obtaining the source code, install the pipeline with the command:

python setup.py install

from the top-level directory.

Alternately, a development installation may be performed from inside the directory with the command:

pip install -e .

After installation, the top-level pipeline interface commands should be available in the PATH. Typing:

redux

from the command line should launch the GUI interface, and:

redux_pipe -h

should display a brief help message for the command line interface.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
30

http://ds9.si.edu/
https://github.com/SOFIA-USRA/sofia_redux

SOF-US-HBK-OP10-2008
Rev. J

11 Configuration

The DRP pipeline requires a valid and complete configuration file to run. Configuration files are written in plain text,
in the INI format readable by the configobj Python library. These files are divided into sections, specified by brackets
(e.g. [section]), each of which may contain keyword-value pairs or subsections (e.g. [[subsection]]). The HAWC
configuration file must contain the following sections:

• Data configuration, including specifications for input and output file names and formats, and specifications for
metadata handling

• Pipeline mode definitions for each supported instrument mode, including the FITS keywords that define the mode
and the list of steps to run

• Pipeline step parameter definitions (one section for each pipeline step defined)

The pipeline is usually run with a default configuration file (sofia_redux/instruments/hawc/data/config/pipeconf.cfg),
which defines all standard reduction steps and default parameters. It may be overridden with date-specific default val-
ues, defined in (sofia_redux/instruments/hawc/data/config/date_overrides/), or with user-defined parameters. Override
configuration files may contain any subset of the values in the full configuration file. See Appendix: Sample Configu-
ration Files for examples of override configuration files as well as the full default file.

The scan map reconstruction algorithm, run as a single pipeline step for Scan and Scan-Pol mode data, also has its own
separate set of configuration files. These files are stored in the scan module, in sofia_redux/scan/data/configurations.
They are read from this sub-directory in the order specified below.

Upon launch, scan map step will invoke the default configuration files (default.cfg) in the following order:

1. Global defaults from sofia_redux/scan/data/config/default.cfg

2. Instrument overrides from sofia_redux/scan/data/config/hawc_plus/default.cfg

Any configuration file may invoke further (nested) configurations, which are located and loaded in the same order as
above. For example, hawc_plus/default.cfg invokes sofia/default.cfg first, which contains settings for SOFIA instru-
ments not specific to HAWC.

There are also modified configurations for “faint”, “deep”, or “extended” sources, when one of these flags is set while
running the scan map step. For example, the faint mode reduction parses faint.cfg from the above locations, after
default.cfg was parsed. Similarly, there are extended.cfg and deep.cfg files specifying modified configurations for
extended and deep modes, and a scanpol.cfg file specifying configurations specifically for Scan-Pol mode.

See Appendix: Sample Configuration Files for a full listing of the default configuration for the scan map algorithm.

12 Input Data

The HAWC pipeline takes as input raw HAWC data files, which contain binary tables of instrument readouts and
metadata. The FITS headers contain data acquisition and observation parameters and, combined with the pipeline
configuration files and other auxiliary files on disk, comprise the information necessary to complete all steps of the
data reduction process. Some critical keywords are required to be present in the raw data in order to perform a successful
grouping, reduction, and ingestion into the SOFIA archive. These are defined in the DRP pipeline in a configuration
file that describes the allowed values for each keyword, in INI format (see Appendix: Required Header Keywords).

It is assumed that the input data have been successfully grouped before beginning reduction. The pipeline considers
all input files in a reduction to be science files that are part of a single homogeneous reduction group, to be reduced
together with the same parameters. The sole exception is that internal calibrator files (CALMODE=INT_CAL) may be
loaded with their corresponding Chop-Nod or Nod-Pol science files. They will be reduced separately first, in order to
produce flat fields used in the science reduction.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
31

SOF-US-HBK-OP10-2008
Rev. J

12.1 Auxiliary Files

In order to complete a standard reduction, the pipeline requires a number of files to be on disk, with locations specified
in the DRP configuration file. Current default files described in the default configuration are stored along with the
code, typically in the sofia_redux/instruments/hawc/data directory. See below for a table of all commonly used types
of auxiliary files.

Table 6: Auxiliary files used by DRP reductions for Chop-Nod and Nod-
Pol data

Auxiliary
File

File
Type

Pipe Step Comments

Jump Map FITS Flux Jump Contains jump correction values per pixel
Phase FITS Demodulate Contains phase delay in seconds for each pixel
Reference
Phase

FITS Demod. Plots Contains reference phase angles for comparison with the cur-
rent observation

Sky Cal FITS Make Flat Contains a master sky flat for use in generating flats from
INT_CALs

Flat FITS Flat Correct Contains a back-up flat field, used if INT_CAL files are not
available

IP FITS Instrumental Polar-
ization

Contains q and u correction factors by pixel and band

The jump map is used in a preparatory step before the pipeline begins processing to correct raw values for a residual
electronic effect that results in discontinuous jumps in flux values. It is a FITS image that matches the dimensions
of the raw flux values (128 x 41 pixels). Pixels for which flux jump corrections may be required have integer values
greater than zero. Pixels for which there are no corrections necessary are zero-valued.

The phase files used in the Demodulate step should be in FITS format, with two HDUs containing phase information
for the R and T arrays, respectively. The phases are stored as images that specify the timing delay, in seconds, for each
pixel. The reference phase file used in the Demod Plots step is used for diagnostic purposes only: it specifies a baseline
set of phase angle values, for use in judging the quality of internal calibrator files.

Normally, the pipeline generates the flat fields used in the Flat Correct step from internal calibrator (INT_CAL) files
taken alongside the data. To do so, the Make Flats step uses a Sky Cal reference file, which has four image extensions:
R Array Gain, T Array Gain, R Bad Pixel Mask, and T Bad Pixel Mask. The image in each extension should match
the dimensions of the R and T arrays in the demodulated data (64 x 41 pixels). The Gain images should contain
multiplicative floating-point flat correction factors. The Bad Pixel Mask images should be integer arrays, with value
0 (good), 1 (bad in R array), or 2 (bad in T array). Bad pixels, corresponding to those marked 1 or 2 in the mask
extensions, should be set to NaN in the flat images. At a minimum, the primary FITS header for the flat file should
contain the SPECTEL1 and SPECTEL2 keywords, for matching the flat filter to the input demodulated files.

When INT_CAL files are not available, the Flat Correct step may use a back-up flat file. This file should have the same
format as the Sky Cal file, but the R Array Gain and T Array Gain values should be suitable for direct multiplication
with the flux values in the Flat Correct step. There should be one back-up flat file available for each filter passband.

In addition to these files, stored with the DRP code, the pipeline requires several additional auxiliary files to perform flux
calibration. These are tracked in the pipecal package, used to support SOFIA flux calibration for several instruments,
including HAWC. The required files include response coefficient tables, used to correct for atmospheric opacity, and
reference calibration factor tables, used to calibrate to physical units.

The instrumental response coefficients are stored in ASCII text files, with at least four white-space delimited columns
as follows: filter wavelength, filter name, response reference value, and fit coefficient constant term. Any remaining
columns are further polynomial terms in the response fit. The independent variable in the polynomial fit is indicated
by the response filename: if it contains airmass, the independent variable is zenith angle (ZA); if alt, the independent
variable is altitude in thousands of feet; if pwv, the independent variable is precipitable water vapor, in 𝜇𝑚. The
reference values for altitude, ZA, and PWV are listed in the headers of the text files, in comment lines preceded with #.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
32

SOF-US-HBK-OP10-2008
Rev. J

Calibration factors are also stored in ASCII format, and list the correction factor by mode and HAWC filter band, to be
applied to opacity-corrected data.

Some additional auxiliary files are used in reductions of flux standards, to assist in deriving the flux calibration factors
applied to science observations. These include filter definition tables and standard flux tables, by date and source.

Table 7: Auxiliary files used for calibration (all modes)
Auxiliary File File

Type
Pipe Step Comments

Response ASCII Opacity Correct Contains instrumental response coefficients by altitude, ZA
Calibration Fac-
tor

ASCII Calibrate Contains reference calibration factors by filter band, mode

Filter definition ASCII Standard Photome-
try

Contains filter wavelength band and standard aperture defi-
nitions

Standard flux ASCII Standard Photome-
try

Contains reference flux values for a known source, by filter
band

13 Automatic Mode Execution

The DPS pipeline infrastructure runs a pipeline on previously-defined reduction groups as a fully-automatic black box.
To do so, it creates an input manifest (infiles.txt) that contains relative paths to the input files (one per line). The
command-line interface to the pipeline is run as:

redux_pipe infiles.txt

The command-line interface will read in the specified input files, use their headers to determine the observation mode,
and accordingly the steps to run and any intermediate files to save. Output files are written to the current directory,
from which the pipeline was called. After reduction is complete, the script will generate an output manifest (outfiles.txt)
containing the relative paths to all output FITS files generated by the pipeline.

Optionally, in place of a manifest file, file paths to input files may be directly specified on the command line. Input
files may be raw FITS files, or may be intermediate products previously produced by the pipeline. For example, this
command will complete the reduction for a set of FITS files in the current directory, previously reduced through the
calibration step of the pipeline:

redux_pipe *CAL*.fits

To customize batch reductions from the command line, the redux_pipe interface accepts a configuration file on the
command line. This file may contain any subset of the full configuration file, specifying any non-default parameters
for pipeline steps. An output directory for pipeline products and the terminal log level may also be set on the command
line.

The full set of optional command-line parameters accepted by the redux_pipe interface are:

-h, --help show this help message and exit
-c CONFIG, --configuration CONFIG

Path to Redux configuration file.
-o OUTDIR, --out OUTDIR

Path to output directory.
-l LOGLEVEL, --loglevel LOGLEVEL

Log level.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
33

SOF-US-HBK-OP10-2008
Rev. J

14 Manual Mode Execution

In manual mode, the pipeline may be run interactively, via a graphical user interface (GUI) provided by the Redux
package. The GUI is launched by the command:

redux

entered at the terminal prompt (Fig. 6). The GUI allows output directory specification, but it may write initial or
temporary files to the current directory, so it is recommended to start the interface from a location to which the user
has write privileges.

From the command line, the redux interface accepts an optional config file (-c) or log level specification (-l), in the
same way the redux_pipe command does. Any pipeline parameters provided to the interface in a configuration file will
be used to set default values; they will still be editable from the GUI.

Fig. 6: Redux GUI startup.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
34

SOF-US-HBK-OP10-2008
Rev. J

14.1 Basic Workflow

To start an interactive reduction, select a set of input files, using the File menu (File->Open New Reduction). This
will bring up a file dialog window (see Fig. 7). All files selected will be reduced together as a single reduction set.

Redux will decide the appropriate reduction steps from the input files, and load them into the GUI, as in Fig. 8.

Fig. 7: Open new reduction.

Each reduction step has a number of parameters that can be edited before running the step. To examine or edit these
parameters, click the Edit button next to the step name to bring up the parameter editor for that step (Fig. 9). Within
the parameter editor, all values may be edited. Click OK to save the edited values and close the window. Click Reset
to restore any edited values to their last saved values. Click Restore Defaults to reset all values to their stored defaults.
Click Cancel to discard all changes to the parameters and close the editor window.

The current set of parameters can be displayed, saved to a file, or reset all at once using the Parameters menu. A
previously saved set of parameters can also be restored for use with the current reduction (Parameters -> Load Pa-
rameters).

After all parameters for a step have been examined and set to the user’s satisfaction, a processing step can be run on
all loaded files either by clicking Step, or the Run button next to the step name. Each processing step must be run in
order, but if a processing step is selected in the Step through: widget, then clicking Step will treat all steps up through
the selected step as a single step and run them all at once. When a step has been completed, its buttons will be grayed

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
35

SOF-US-HBK-OP10-2008
Rev. J

Fig. 8: Sample reduction steps. Log output from the pipeline is displayed in the Log tab.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
36

SOF-US-HBK-OP10-2008
Rev. J

Fig. 9: Sample parameter editor for a pipeline step.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
37

SOF-US-HBK-OP10-2008
Rev. J

out and inaccessible. It is possible to undo one previous step by clicking Undo. All remaining steps can be run at once
by clicking Reduce. After each step, the results of the processing may be displayed in a data viewer. After running a
pipeline step or reduction, click Reset to restore the reduction to the initial state, without resetting parameter values.

Files can be added to the reduction set (File -> Add Files) or removed from the reduction set (File -> Remove Files),
but either action will reset the reduction for all loaded files. Select the File Information tab to display a table of
information about the currently loaded files (Fig. 10).

Fig. 10: File information table.

14.2 Display Features

The Redux GUI displays images for quality analysis and display (QAD) in the DS9 FITS viewer. DS9 is a standalone
image display tool with an extensive feature set. See the SAO DS9 site (http://ds9.si.edu/) for more usage information.

After each pipeline step completes, Redux may load the produced images into DS9. Some display options may be
customized directly in DS9; some commonly used options are accessible from the Redux interface, in the Data View
tab (Fig. 11).

From the Redux interface, the Display Settings can be used to:

• Set the FITS extension to display (First, or edit to enter a specific extension), or specify that all extensions should
be displayed in a cube or in separate frames.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
38

http://ds9.si.edu/

SOF-US-HBK-OP10-2008
Rev. J

Fig. 11: Data viewer settings and tools.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
39

SOF-US-HBK-OP10-2008
Rev. J

• Lock individual frames together, in image or WCS coordinates.

• Lock cube slices for separate frames together, in image or WCS coordinates.

• Set the image scaling scheme.

• Set a default color map.

• Zoom to fit image after loading.

• Tile image frames, rather than displaying a single frame at a time.

Changing any of these options in the Data View tab will cause the currently displayed data to be reloaded, with the
new options. Clicking Reset Display Settings will revert any edited options to the last saved values. Clicking Restore
Default Display Settings will revert all options to their default values.

In the QAD Tools section of the Data View tab, there are several additional tools available.

Clicking the ImExam button (scissors icon) launches an event loop in DS9. After launching it, bring the DS9 window
forward, then use the keyboard to perform interactive analysis tasks:

• Type ‘a’ over a source in the image to perform photometry at the cursor location.

• Type ‘p’ to plot a pixel-to-pixel comparison of all frames at the cursor location.

• Type ‘s’ to compute statistics and plot a histogram of the data at the cursor location.

• Type ‘c’ to clear any previous photometry results or active plots.

• Type ‘h’ to print a help message.

• Type ‘q’ to quit the ImExam loop.

The photometry settings (the image window considered, the model fit, the aperture sizes, etc.) may be customized in
the Photometry Settings. Plot settings (analysis window size, shared plot axes, etc.) may be customized in the Plot
Settings. After modifying these settings, they will take effect only for new apertures or plots (use ‘c’ to clear old ones
first). As for the display settings, the reset button will revert to the last saved values and the restore button will revert
to default values. For the pixel-to-pixel and histogram plots, if the cursor is contained within a previously defined
DS9 region (and the regions package is installed), the plot will consider only pixels within the region. Otherwise, a
window around the cursor is used to generate the plot data. Setting the window to a blank value in the plot settings will
use the entire image.

Clicking the Header button (magnifying glass icon) from the QAD Tools section opens a new window that displays
headers from currently loaded FITS files in text form (Fig. 12). The extensions displayed depends on the extension
setting selected (in Extension to Display). If a particular extension is selected, only that header will be displayed. If
all extensions are selected (either for cube or multi-frame display), all extension headers will be displayed. The buttons
at the bottom of the window may be used to find or filter the header text, or generate a table of header keywords. For
filter or table display, a comma-separated list of keys may be entered in the text box.

Clicking the Save Current Settings button (disk icon) from the QAD Tools section saves all current display and
photometry settings for the current user. This allows the user’s settings to persist across new Redux reductions, and to
be loaded when Redux next starts up.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
40

SOF-US-HBK-OP10-2008
Rev. J

Fig. 12: QAD FITS header viewer.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
41

SOF-US-HBK-OP10-2008
Rev. J

15 Important Parameters

Below are some useful parameters for HAWC reductions. Parameters for most pipeline steps may be set directly as
key/value pairs in pipeline configuration files; most scan map parameters are added to the options parameter string in
pipeline configuration files. All parameters listed are accessible and editable from the Redux GUI interface as well.

The pipeline steps are as named in the configuration file, in the order they are typically run. Not all steps are run for
all modes. Note that this list is not exhaustive; see the HAWC+ DRP Developer’s Manual or the code itself for more
information.

• checkhead

– abort: Set to False to allow the pipeline to attempt to continue reduction despite incorrect header keywords.
Default is True.

• demodulate

– phasefile: Set to a FITS file for per-pixel phase shifts, or to a floating point number to apply the same phase
shift to all pixels (in seconds of delay). Default is typically a file in hawc/pipeline/data/phasefiles.

– phaseoffset: Set to a floating point number to apply an offset to the specified phase file. The value should
be specified in degrees: it is usually determined from the median offset reported by the demodulation plots
for the INT_CAL files. Default is 0.0.

– track_tol: If non-negative, the pipeline step will use this number as the tracking tolerance in arcseconds.
Samples with tracking deviation larger than this number will be rejected. If set to ‘beam’, the beam size for
the filter band will be used. If set to ‘centroidexp’, the CentroidExpMsec data stream will be used to flag
data, rather than the TrackErrAoi3/4 data stream. Set to -1 to turn off tracking rejection entirely. Default is
centroidexp.

– data_sigma: Sigma threshold for clipping data means; used in calculating variance. Default is 5.0.

• flat

– flatfile: Set to a file glob to identify flats to use in processing. Default is “flats/*OFT*.fits”.

– flatfitkeys: Header keywords to match between data and flat fields. Default is “`SPECTEL1’, ‘MISSN-ID’,
‘FILEGPID’, ‘SCRIPTID’”.

– bkupflat: File glob specifying back-up flats in case flatfile does not exist. Default is
“$DPS_HAWCPIPE/pipeline/data/flats/*OFT.fits”.

• split

– rtarrays: Set to ‘RT’ to use both R and T arrays, ‘R’ for R only, or ‘T’ for T only. Default is ‘RT’.

– nod_tol: Percent difference between the number of chop cycles in each nod position that will be tolerated
for continuing the reduction. Set higher to reject fewer data files. Default is 50.0.

• combine

– sigma: Reject outliers more than this many sigma from the mean. Default is 3.0.

– sum_sigma: Reject additional outliers in R+T more than this many sigma from the mean. Default is 4.0.

• scanmap

– use_frames: Frames (time samples) to use from the reduction. Specify a particular range, as ‘400:-400’ or
‘400:1000’

– deep: If set, faint point-like emission is prioritized.

– faint: If set, faint emission (point-like or extended) is prioritized.

– extended: If set, extended emission is prioritized. This may increase noise on large angular scales.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
42

SOF-US-HBK-OP10-2008
Rev. J

– options: Additional options to pass to the scan map algorithm. Options should be specified by key=value
pairs, separated by spaces. For example, ‘rounds=10 sigmaclip=True’. See Appendix: Scan Map Option
Glossary for a full list of available options.

• scanmappol

– save_intermediate: If set, individual output files from the scan map algorithm are saved in separate files.
This is primarily for diagnostic use.

– vpa_tol: If differences between telescope angles (VPA) within a scanpol group are more than this value,
this step will issue a warning.

– use_frames: Frames (time samples) to use from the reduction. Specify a particular range, as ‘400:-400’ or
‘400:1000’

– deep: If set, faint point-like emission is prioritized.

– faint: If set, faint emission (point-like or extended) is prioritized.

– extended: If set, extended emission is prioritized. This may increase noise on large angular scales.

– options: Additional options to pass to the scan map algorithm. Options should be specified by key=value
pairs, separated by spaces. For example, ‘rounds=10 sigmaclip=True’. See Appendix: Scan Map Option
Glossary for a full list of available options.

• stokes

– erri: Method for inflating errors in I from standard deviation across HWP angles. Can be median, mean,
or none. Default is none.

– removeR1stokesi: Set to False to keep the R1 array in the Stokes I image. Default is True.

• scanstokes

– zero_level_method: Statistic for zero-level calculation (‘mean’, ‘median’, or ‘none’). If ‘none’, the zero-
level will not be corrected. For the other options, either a mean or median statistic will be used to determine
the zero-level value from the region set by the region and radius parameters.

– zero_level_region: If set to ‘header’, the zero-level region will be determined from the ZERO_RA,
ZERO_DEC, ZERO_RAD keywords (for RA center, Dec center, and radius, respectively). If set to
‘auto’, a mean- or median-filter will be applied to the R and T images, with the radius specified by the
zero_level_radius parameter. The lowest negative local average that is negative in both R and T for all
HWP angles is assumed to be the zero level. R and T values are applied separately, from the value of the
average at the same pixel. Otherwise, a region may be directly provided as a list of [RA center, Dec center,
radius], in degrees.

– zero_level_radius : Filter radius for zero-level calculation, in arcseconds (per band). Used only for
zero_level_region = ‘auto’.

– zero_level_sigma : Sigma value for statistics clipping. Ignored for zero_level_region = ‘auto’.

• wcs

– offsibs_x: Offset in pixels along X between SIBS_X and actual target position on array. Should be a comma-
separated list of 5 numbers, one for each band; for example, ‘-0.9, 0.0, 1.1, 0.0, 1.1’. Default may vary over
time.

– offsibs_y: Offset in pixels along Y between SIBS_Y and actual target position on array, as for offsibs_x.
Default may vary over time.

• ip

– qinst: Fractional instrumental polarization in q. Should be a comma-separated list of 5 numbers, one for
each band; for example, ‘-0.01191, 0.0, -0.01787, -0.00055, -0.01057’. Default may vary over time.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
43

SOF-US-HBK-OP10-2008
Rev. J

– uinst: Fractional instrumental polarization in u, as for qinst.

– fileip: FITS file specifying IP corrections for each pixel and band. If set to ‘uniform’, the step will use the
qinst and uinst values; otherwise, these values are ignored if fileip is specified.

• rotate

– gridangle: Detector angle offset, in degrees. Should be a comma-separated list of 5 numbers, one for each
band; for example, ‘-89.69, 0.0, -104.28, 37.42, 119.62’. Default may vary over time.

• bgsubtract

– bgslope: Number of iterations to run with slope term. If zero, slope will not be fit (i.e. residual gains will
not be corrected). Default is 0.

– bgoffset: Number of iterations to run with offset term. If zero, offset will not be fit (i.e. residual background
will not be removed). Default is 10.

– qubgsubtract: Set to True to calculate and remove offsets in Q and U maps, in addition to Stokes I. Default
is True; must be set to False for Chop-Nod data.

• binpixels

– block_size: Bin size, in pixels. The value provided must divide the 64x40 array evenly into square blocks.
Values 2, 4, or 8 will work. If set to 1, no binning will be performed. Default value is 1.

• merge

– cdelt: Pixel size in arcseconds of output map, one number per band. Decrease to sub-sample the input
pixels more. Default is ‘1.21, 1.95, 1.95, 3.40, 4.55’, half the detector pixel scale (beam size / 4).

– fwhm: FWHM in arcseconds of Gaussian smoothing kernel, by band. Make larger for more smoothing.
Default is ‘4.84, 7.80, 7.80, 13.6, 18.2’, for beam-size smoothing.

– radius: Integration radius for input pixels, by band. Set larger to consider more pixels when calculating
output map. Default is ‘9.68, 15.6, 15.6, 27.2, 36.4’ (beam-size * 2).

– fit_order: Polynomial fit order for local regression. Default is 2.

– errflag: Set to True to use error image for weighting. Default is True.

– edge_threshold: Threshold to set edge pixels to NaN. Range is 0-1; 0 means keep all edge pixels. Higher
values keep fewer pixels.

– adaptive_algorithm: If ‘shaped’ or ‘scaled’, adaptive smoothing will be used, varying the kernel size ac-
cording to the data. If ‘shaped’, the kernel shape and rotation angle may also vary. Set to ‘none’ to turn off
adaptive smoothing.

– fit_threshold: Deviation from weighted mean to allow for higher order fit. Set to 0 to turn off. Positive
values replace bad values with the mean value in the window; negative values replace bad values with
NaN.

– bin_cdelt: If set, and data was previously binned via the binpixels step, then the input cdelt and radius will
be multiplied by the binning factor. If not set, the provided cdelt will be used directly. This allows useful
default behavior for binned data, but still allows for tunable output pixel sizes.

• region

– skip: Set to a number 𝑖 to keep vectors every 𝑖th pixel. Default is 2 (as appropriate for cdelt=beamsize/4 in
merge step).

– mini: Do not keep vectors from pixels with Stokes I flux less than this fraction of peak flux. Default is 0.0.

– minisigi: Do not keep vectors from pixels with Stokes I flux less than this many sigma. Default is 200.

– minp: Do not keep vectors with percent polarization less than this value. Default is 0%.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
44

SOF-US-HBK-OP10-2008
Rev. J

– maxp: Do not keep vectors with percent polarization greater than this value. Default is 50%.

– sigma: Do not keep vectors with 𝑝/𝜎𝑝 less than this value. Default is 3.0.

– length: Scale factor for polarization vectors in DS9 region file, in pixels. Default is 10 (i.e. a 10% polar-
ization vector is the length of one pixel).

– rotate: Plot rotated (B field) vectors in DS9 region file. Default is True.

– debias: Plot debiased vectors in DS9 region file. Default is True.

• polmap

– maphdu: Extension to use for the plot. Default is ‘STOKES I’.

– lowhighscale: [low, high] percentile values to use for image scaling. Default is 0.25,99.75.

– scalevec: Scale factor for polarization vectors in polmap image. Default is 0.0003.

– scale: If True, plotted vectors are scaled by their magnitude. If False, all vectors are plotted at the same
length. Default is True.

– rotate: Plot rotated (B field) vectors in polmap image. Default is True.

– debias: Use debiased polarizations for plotting. Default is True.

– colorvec: Color to use for vectors in polmap image. Default is ‘black’.

– colormap: Color map to use in polmap image. Default is ‘plasma’. Any valid Matplotlib color map name
may be specified.

– ncontours: Number of contour levels. Set to 0 to turn off contours. Default is 30.

– colorcontour: Color to use for contour lines in polmap image. Default is ‘gray’.

– fillcontours: If True, contours are filled. Default is True.

– grid: If True, a coordinate grid is overlaid. Default is True.

– title: Title for the plot. If set to ‘info’, the title is auto-generated from the FITS file information. Any other
string will be used directly as the title. Default is ‘info’.

– centercrop: If True, the plot is cropped to the dimensions specified in the centercropparams. Default is
False.

– centercropparams: Specifies the crop region if centercrop = True. Should be specified as [RA, Dec, width,
height] in decimal degrees.

– watermark: If set to a non-empty string, the text will be added to the lower-right of the image as a semi-
transparent watermark.

• imgmap

– maphdu: Extension to use for the plot. Default is ‘STOKES I’.

– lowhighscale: [low, high] percentile values to use for image scaling. Default is 0.25,99.75.

– colormap: Color map to use in polmap image. Default is ‘plasma’. Any valid Matplotlib color map name
may be specified.

– ncontours: Number of contour levels. Set to 0 to turn off contours. Default is 0.

– colorcontour: Color to use for contour lines in polmap image. Default is ‘gray’.

– fillcontours: If True, contours are filled. Default is True.

– grid: If True, a coordinate grid is overlaid. Default is False.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
45

SOF-US-HBK-OP10-2008
Rev. J

– title: Title for the plot. If set to ‘info’, the title is auto-generated from the FITS file information. Any other
string will be used directly as the title. Default is ‘info’.

– centercrop: If True, the plot is cropped to the dimensions specified in the centercropparams. Default is
False.

– centercropparams: Specifies the crop region if centercrop = True. Should be specified as [RA, Dec, width,
height] in decimal degrees.

– watermark: If set to a non-empty string, the text will be added to the lower-right of the image as a semi-
transparent watermark.

Part VII

Data Quality Assessment
After the pipeline has been run on a set of input data, the output products should be checked to ensure that the data
has been properly reduced. Data quality and quirks can vary widely across individual observations, but the following
general guideline gives some strategies for approaching quality assessment for HAWC+ data.

For any mode:

• Check the instrument scientist’s log for any data that is known to be of poor or questionable quality.

• Check the output to the log file (usually called redux_[date]_[time].log), written to the same directory as the
output files. Look for messages marked ERROR or WARNING. The log will also list every parameter used in
DRP steps, which may help disambiguate the parameters as actually-run for the pipeline.

• Check that the expected files were written to disk. There should be, at a minimum, a DMD, WCS, CAL, and
PMP file for Nod-Pol data, and a CRH and CAL file for Scan data.

For Nod-Pol or Scan-Pol mode:

• Display all CAL files together. Verify that no one file looks unreasonably noisy compared to the others, and that
any visible sources appear in the same locations, according to the world coordinate system in each file’s header.
Particular CAL files may need to be excluded, and the last steps of the pipeline re-run.

• Check the CAL files for persistent bad pixels or detector features. If present, the flat field or bad pixel mask may
need updating.

• Display the final PMP file. Verify that the mapping completed accurately, with no unexpected or unusual artifacts.
The weighting flags may need modification, or the smoothing may need to be increased.

• Overlay the DS9 polarization vector file (*.reg) on the PMP file. Check for unusually noisy vector maps (e.g.
long vectors near the edges).

• For observations of flux standards, compare the total flux in the source, via aperture photometry, to a known
model. Flux calibration should be within 20%; if it is not, the calibration factors may need to be adjusted, or
some off-nominal data may need to be excluded from the reduction.

• For observations of polarimetric standards, verify that the total polarization (Q/I and U/I) is less than 0.6% in
regions that should have zero total polarization. If it is not, the instrumental polarization parameters may need
adjusting.

• Check that sources appear at the expected coordinates. If they do not, the boresight offsets used by the pipeline
may need to be adjusted.

• Check the FHWM and PSF shape of the source. If it is larger than expected, or not round, there may have been
a problem with telescope guiding or chopping/nodding.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
46

SOF-US-HBK-OP10-2008
Rev. J

• If there are output products from the chi2 pipeline, review them for discrepancies between sets of dithers, or
excessive noise or artifacts.

For Scan or Scan-Pol mode:

• Check the log for warnings about scans that may have been excluded from reduction or are of poor quality.

• Display the final CRH image. Check that no unusual artifacts appear (e.g. holes or “worms” caused by bad pixels
that were not properly excluded from the scans). Try reducing the data with the -fixjumps option to see if these
artifacts improve.

• Check that the map is not unusually large and does not include patches disconnected from the main image. These
may be signs of poor tracking during the observation or missing metadata in the input FITS tables. Try reducing
each scan individually to see if a bad scan may be identified and excluded.

• For observations of flux standards, compare the total flux in the source, via aperture photometry, to a known
model. Flux calibration should be within 20%; if it is not, the calibration factors or the opacity correction may
need to be adjusted.

• Check the FHWM and PSF shape of the source. If it is larger than expected, or not round, there may have been
a problem with telescope guiding or focus.

• Check that the source is at the expected coordinates. If not, the boresight offsets may need to be adjusted. Check
the SIBSDX and SIBSDY keywords in the header.

• If the target is not visible in the default reduction, try reducing the data with the faint option. Note: this option
should be used for scan mode only; it should not be used for Scan-Pol observations.

• If the target has extended diffuse emission, it may be beneficial to try reducing the data with the extended option.
If applied to Scan-Pol observations, compare the polarization maps from the regular pipeline and the output from
the extended parameter. Check for inconsistent vectors in the polarization map. If not sure of the output, contact
the lead Instrument Scientist for feedback.

Part VIII

Appendix: Scan Map Option Glossary

Table 8: Configuration Keywords
Keyword Usage in configuration

file
Description

1overf.freq
[1overf]
freq=<X>

The target frequency X (Hz) at which the 1/f is measured
for logging global 1/f noise statistics. The logged quan-
tity is the ratio of the PSD measured at this frequency to
that measured at the reference frequency 1overf.ref . The
actual measurement frequency will always be above the
filter cutoff of drifts filtering.

1overf.ref
[1overf]
ref=<X>

The white noise reference frequency X (Hz) used when
providing 1/f noise statistics. If the value exceeds the
Nyquist frequency of the timestream, then the Nyquist
value will be used instead. See 1overf.freq.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
47

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

accel
Alias:
correlated.accel-mag

[accel]
<options. . .>

Can be used to enable acceleration response decorrela-
tion, or to set options for it. See correlated.<modality>
for available options.

aclip aclip=<X> Clip data when the telescope acceleration is above X arc-
sec/s^2. Heavy accelerations can put mechanical energy
into the detector system, changing the shape of the pri-
mary, thereby generating bright signals from the vary-
ing illumination of the bright atmosphere. Clipping data
when there is danger of this happening is a good idea.
See accel for possible modelling of these signals.

add add={<key>,
<key>=<value>}, . . .

Add a key to the configuration. If only <key> is given,
it’s value will be set to ‘True’. Multiple keys and val-
ues may be added to the configuration by supplying a
comma-separated list.

aliases
[aliases]
<branch1>=<alias1>
<branch2>=<alias2>
. . .

The [aliases] section specifies user defined con-
venient shorthand notations for configuration key-
words. For example, if one defines the alias
sky=correlated.sky, then sky.gainrange will actually ref-
erence correlated.sky.gainrange for any configuration
operation. Aliases may also reference other aliases,
so sg=sky.gainrange would allow sg to reference corre-
lated.sky.gainrange.

altaz
Sets: system=horizontal

altaz={True, False} A conditional switch to reduce in Alt/Az coordinates.
See system.

array
Alias for:
correlated.obs-channels

[array]
<options. . .>

An alias for all radiation-sensitive channels of the instru-
ment, or set options for it. See correlated.<modality>
for further details.

beam beam=<X> Set the instrument beam to X arcseconds. Also see res-
olution.

beammap
Sets: pixelmap=True

beammap={True, False} A conditional switch that sets pixelmap to True.

blacklist black-
list=<key1>,<key2>,. . .

Similar to forget, except it will not set options even if
they are specified at a later time. This is useful for alto-
gether removing settings from the configuration.

blank blank=<X> Skip data from modelling over points that have a source
flux exceeding the signal-to-noise level X. This may be
useful in reducing the filtering effect around bright See
clip.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
48

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

blind blind=<range list> Specify a list of blind pixels. Use data indices and
ranges in a comma-separated form. Blind channels may
be used by some instruments to estimate instrumental
signals, such as temperature fluctuations. Channels are
numbered from 0 (C-style). See flag. <range list> is a
comma-separated list of individual channels or channel
ranges. For example:

blind=10,15:18,33
Would blind channels 10, 15, 16, 17, 18, and 33.

bright
Sets: config=bright.cfg

bright={True, False} Use for bright sources (S/N > ~1000). This setting en-
tirely bypasses all filtering to produce a very faithful
map. The drawback is more noise. See config, faint,
and deep.

chopped chopped={True, False} Used for specifying a chopped data reduction. Can be set
manually or automatically (via detect.chopped) based on
the data itself. The key may trigger conditional state-
ments and extra decorrelation steps. See detect.chopped,
correlated.<modality>.trigger.

chopper.invert
Instrument: HAWC+

chopper.invert={True,
False}

An option to flip the direction associated with the analog
chopper R/S signals.

chopper.shift
Instrument: HAWC+

chopper.shift=<N> Shift the chopper R/S analog signals by N raw frames
(sampled at 203.25 Hz), relative to the detector readout
to improve synchronization. See shift.

chopper.tolerance
Instrument: HAWC+

chopper.tolerance=<X> Allow setting a tolerance for the chopper position in arc-
seconds. If the actual chopper distance is not within the
tolerance from the nominal chopper amplitude, then the
exposure will not be used to avoid smearing.

clip clip=<X> In early generations of the source map, force map pix-
els with flux below signal-to-noise level X to zero. This
may help getting lesser baselines, and filtering artifacts
around the brighter peaks. Often used together with
blank in the intermediate iterations. See blank and it-
eration.

cols
Alias: correlated.cols

[cols]
<options. . .>

An alias for column based decorrelation of the detector
array. Used to perform decorrelation, or set decorrela-
tion options.

commonwcs commonwcs={True,
False}

If the reduction consists of multiple sub-reductions (e.g.
a sub reduction for each HAWC+ subarray), specify that
the output map for all reductions should share a common
WCS and equivalent dimensions.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
49

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

conditionals
[conditionals]
[[<requirement>]]
<key1>=<value1>
. . .

Used to set configuration values in specific circum-
stances. Multiple key=value settings can be applied un-
der each requirement once that requirement has been
fulfilled. Requirements should take the form [[<key-
word>]] or [[<keyword><operator><value>]]. The first
will apply settings should that keyword be set in the con-
figuration. The more complex alternative involves com-
paring one configuration keyword value with another in
the requirement, and apply all settings if evaluated as
true. <operator> can be one of =, !=, <, <=, >, or >=.

config config=<filename> Load a configuration file filename. Files are looked for
in the following order from lowest to highest priority in
the sofia_scan/scan/data/configurations folder (<c>) and
a optional user configuration directory (~/.sofscan):

1. <c>/<filename>
2. ~/.sofscan/<filename>
3. <c>/<instrument>/<filename>
4. ~/.sofscan/<instrument>/<filename>

Whenever a matching file is found, its contents are
parsed. Because of the ordering, it is convenient to cre-
ate overriding configurations. Each successively loaded
file may override the options set before it. See bright,
faint, and deep.

correlated.<modality>
[correlated]
[[<modality>]]
<key>=<value>
. . .

Remove the correlated noise term across the entire ar-
ray where <modality> is the name of the modality on
which decorrelation is performed. E.g. ‘obs-channels’
or ‘gradients’. This is an effective way of dealing with
most atmospheric and instrumental signals, such as sky
noise, ground pickup, temperature fluctuations, electro-
magnetic or microphonic pickups. The decorrelation of
each modality can be further controlled by a number of
<key>=<value> settings (see below). The given decor-
relation step must also appear in the pipeline ordering
before it can be used. See division.<name> and order-
ing.

correlated.<modality>.
gainrange [correlated]

[[<modality>]]
gainrange=<min>:<max>

Specify a range of acceptable gains to the given cor-
related signal <modality>, relative to the average gain
response of the correlated mode. Channels that ex-
hibit responses outside of this range will be appropri-
ately flagged in the reduction, and ignored in the mod-
elling steps until the flag is revised and cleared in an-
other decorrelation step. See division.<name>.gainflag
and correlated.<modality>.signed.

correlated.<modality>.
nofield [correlated]

[[<modality>]]
nofield={True, False}

Allow decoupling of the gains of the correlated mode
from the gain fields stored under the channel (initialized
from the file specified by pixeldata). See pixeldata and
source.fixedgains.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
50

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

correlated.<modality>.
nogains [correlated]

[[<modality>]]
nogains={True, False}

Disable the solving of gains (i.e. channel responses) to
the correlated signal <modality>.

correlated.<modality>.
nosignals [correlated]

[[<modality>]]
nosignals={True, False}

Disable solving for the correlated signal <modality>
whose value stays fixed.

correlated.<modality>.
phases [correlated]

[[<modality>]]
phases={True, False}

Decorrelate the phase data (e.g. for chopped photometry
scans) together with the fast samples. The same gains are
used as for the usual decorrelation on the fast samples.

correlated.<modality>.
phasegains [correlated]

[[<modality>]]
phasegains={True, False}

Determine the gains from the phase data, rather than
from the correlated fast samples. You can also set this
globally for all correlated modalities/modes using the
phasegains keyword. See phasegains.

correlated.<modality>.
resolution [correlated]

[[<modality>]]
resolution=<X>

Set the time resolution (in seconds) for the decorrelation
of <modality>. When dealing with 1/f-type signals, you
probably want to set this to the 1/f knee time-scale or be-
low if you want optimal sensitivities. Else, you may want
to try larger values if you want to recover more large-
scale emission and are not too worried about the loss of
sensitivity. See extended.

correlated.<modality>.
signed [correlated]

[[<modality>]]
signed={True, False}

by default, gain responses are allowed to be bidirec-
tional, and flagging affects only those channels or pixels,
where absolute gain values fall outside of the specified
range. When ‘signed’ is set, the gains are flagged with
the signs also taken into account. I.e., under ‘signed’,
‘gainrange’ or ‘0.3:3.0’ would flag pixels with a gain
of -0.8, whereas the default behaviour is to tolerate
them. See correlated.<modality>.gainrange and corre-
lated.<modality>.nogains.

correlated.<modality>.
span [correlated]

[[<modality>]]
span={True, False}

Make the gains of the correlated modality span scans in-
stead of integrations (subscans). You can also set this
option for all correlated modalities at once using the
gains.span key.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
51

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

correlated.<modality>.
trigger [correlated]

[[<modality>]]
trigger=<requirement>

You can specify a configuration key that is to serve as
a trigger for activating the decorrelation of <modality>.
This is used, for example, to activate the decorrelation
of chopper signals, if and when the chopped keyword
is specified. <requirement> may take the form <key> or
<key><operator><value>. If a single <key> is specified,
the trigger will activate if the retrieved value from the
configuration evaluates to True. Otherwise <operator>
(!=, =, <, <=, >, >=) may be used to check a value in the
configuration against <value>.

correlated.<*> corre-
lated.*.gainrange=0.3:3.0

You can use wildcards ‘*’ to set options for all decorre-
lation steps at once. The above example sets the corre-
lated.<modality>.gainrange value for all currently de-
fined branches (and modalities) to 0.3:3.

crushbugs crushbugs={True, False} Allow SOFSCAN to replicate some of the most promi-
nent bugs found in the original CRUSH. These bugs cur-
rently include:

1. Double adding of frame (time) dependents for
FFT fixed filters (see filter).

2. Adding frame (time) dependents N times rather
than once during integration syncing with the
source model, where N is the number of channels.

The above issues become noticeable after many itera-
tions (see rounds) since the fraction by which depen-
dents change are usually very small. However, after a
while you may notice some data being flagged unneces-
sarily. There is a significant bug that has not been cov-
ered by crushbugs in which the real and imaginary in-
terleaved FFT spectrum (realf0, imagf0, realf1, imagf1,
realf2. . .), as determined by the filter step, is subtracted
from the timestream in addition to it’s inverse transform
(correct method of removal).

datapath datapath=<directory> Look for raw data to reduce in the directory <directory>.
dataunit dataunit=<name> Specify the units in which the data are stored. Typically,

‘counts’ or ‘V’, or any of their common multiples such
as ‘mV’, ‘uV’ or astropy.units unit types are accepted.
The conversion from data units to Jansky-based units is
set via the jansky option, while the choice of units in the
data reduction is set be unit.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
52

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

date
[date]
[[<start>–<end>]]
<key>=<value>
. . .

A way to set date specific conditional statements.
<start> and <end> can be specified as ISOT strings or
float MJD values, both in the UTC scale. Wildcards (‘*’)
may also be used to unbound the start or end time. E.g.:

[date]
[[2021-12-14T10:00:00–*]]
instrument.gain=-1000
chopped=True

would set the instrument gain to -1000, and indicate
chopped observations for any time after 10:00 UTC on
December 12, 2021.

deep
Sets: config=deep.cfg

deep={True, False} Use for very faint sources which are not all detected in
single scans, or if you think there is too much residual
noise (baselines) in the map. This setting results in the
most aggressive filtering and will load the configuration
from ‘deep.cfg’. The output map is optimally filtered
(smoothed) for point sources. See config, bright, and
faint.

dejump
[dejump]
<options. . .>

Used to specify options for the ‘dejump’ task which
identifies places in the data stream where detectors jump
together (especially SQUIDs under a transient B-field
fluctuation) by the perceived increase in residual de-
tector noise. Sub-settings are dejump.level and de-
jump.minlength. This will only occur if ‘dejump’ ap-
pears in ordering.

dejump.level dejump.level=<X> The relative noise level at which jumps are identified.
The value should be strictly greater than 1, with 2.0 be-
ing a safe starting point. Change with extreme caution,
if at all. See dejump.

dejump.minlength dejump.minlength=<X> The minimum length (in seconds) of a coincident detec-
tor jump that is kept alive in the data. Jumps longer than
this threshold will be re-levelled, wheras shorted jumps
will be flagged out entirely. See dejump.

derive
Sets:
forget = pixeldata, vclip,
aclip
blacklist = whiten
write.pixeldata = True
rounds = 30

derive={True, False} A conditional switch which when activated will per-
form a reduction suitable for deriving pixel data. See
write.pixeldata.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
53

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

despike
[despike]
<options. . .>

Used to define despiking options. SOFSCAN allows the
use of up to three different spiking steps, each config-
urable on its own. In order to be enabled, ‘despike’ must
be specified in ordering. To specify a despiking method,
S/N levels and flagging criteria, please see the various
despiking options below.

despike.blocks despike.blocks={True,
False}

Flag out an entire ‘drifts’ block of data around any spikes
found. This is probably an overkill in most cases, but
may be useful if spikes are due to discontinuities (jumps)
in individual detectors. See drifts.

despike.flagcount despike.flagcount=<N> Tolerate (without pixel flagging) up to N spikes in each
pixel.

despike.flagfraction dispike.flagfraction=<X> Tolerate (without pixel flagging) spikes up to fraction X
of the scan frames in each channel.

despike.framespikes de-
spike.framespikes=<N>

Tolerate up to N spikes per frame.

despike.level despike.level=<X> Despike at an S/N level of X.
despike.method despike.method=<name> SOFSCAN offsets a choice of despiking methods to

choose from. Each of these have their own pros and
cons, and may produce different results and side effects
in different environments. The following methods are
currently available:

• neighbours: Despike by comparing neighbouring
samples of data from the same channel.

• absolute: Flag data that deviates by the specified
S/N level (despike.level).

• gradual: Like absolute but proceeds more cau-
tiously, removing only a fraction of the most of-
fending spikes at each turn.

• multires: Look for spikes wider than just a single
sample.

All methods will flag pixels and frames if these have
too many spikes. The flagging of spiky channels
and frames is controlled by the despike.flagcount, de-
spike.flagfraction, and despike.framespikes keys.

detect.chopped detect.chopped={True,
False}

Try to determine if the chopper was used from the data
itself, and set the chopped flag accordingly. This can be
used to trigger the activation of specific reduction steps
for chopped data. See correlated.<modality>.trigger.

division.<name>
[division]
[[<name>]]

value=<group1>,<group2>,. . .

An option to specify user-defined channel divisions con-
taining specific channel groups. This may be use-
ful when creating a new modality. All named groups
must be available in the reduction in order to be in-
cluded in the <name> division. A channel division
contains all channel groups relating to a modality of
the same name. See correlated.<modality>, divi-
sion.<name>.gainfield, division.<name>.gainflag, di-
vision.<name>.id, and group.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
54

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

divi-
sion.<name>.gainfield [division]

[[<name>]]
gainfield=<attribute>

Specify which attribute of the channel data such as ‘cou-
pling’ or ‘nonlinearity’ should be used to provide gain
values for the correlated modality <name>. See corre-
lated.<modality> and division.<name>.

divi-
sion.<name>.gainflag [division]

[[<name>]]
gainflag={<N>, <flag>}

Set the gain flag used for flagging out-of-range gain val-
ues for the correlated modality <name>. An integer
(<N>) or flag name (<flag>) may be specified. Take care
if using an integer to ensure its value matches the desired
flag. If not specified, the default is ‘GAIN’.

division.<name>.id
[division]
[[<name>]]
id=<ID>

Specify a shorthand ID for the modality <name>. This
is usually a two-letter abbreviation of <name>. If not
supplied, defaults to <name>.

downsample downsample={N, auto} Downsample the data by a factor of N. At times the raw
data is sampled at unnecessarily high frequencies. By
downsampling, you can ease the memory requirement
and speed up the reduction. You can also set the value to
‘auto’ (default), in which case an optimal downsampling
rate is determined based on the typical scanning speeds
so that the loss of information will be insignificant due
to unintended smearing of the data.

drifts drifts={X, max, auto} Filter low frequencies below the characteristic timescale
of X seconds as an effective way of dealing with 1/f
noise. You can also use ‘auto’ to determine the filtering
timescales automatically, based on sourcesize, scanning
speeds and instrument stability time-scales. The ‘max’
value is also accepted, producing results identical to that
of offsets.

ecliptic
Sets: system=ecliptic

ecliptic={True, False} Reduce using ecliptic coordinates (for mapping).

equatorial
Sets: system=equatorial

equatorial={True, False} Reduce using equatorial coordinates (for mapping).

estimator estimator={median,
maximum-likelihood}

The estimator to use in deriving signal models. ‘median’
estimators are less sensitive to the presence of bright
sources in the data, therefore it is the default for when
bright is specified (see ‘bright.cfg’). When medians are
used, the corresponding models are reported on the log
output in square brackets ([]). See gains.estimator and
weighting.method.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
55

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

exposureclip exposureclip=<X> Flag (clip) map pixels whose relative time coverage is
less than the specified value X. This is helpful for dis-
carding the underexposed noisy edges of the map. See
noiseclip and clip.

extended extended={True, False} Try to better preserve extended structures. This setting
can be used alone or in combination with brightness op-
tions. For bright structures recovery up to FOV (or be-
yond) should be possible. Faint structures ~1/4 FOV to
~FOV scales are maximally obtainable. See sourcesize,
bright, faint, and deep.

faint
Sets: config=faint.cfg

faint={True, False} Use with faint sources (S/N < ~30) when the source is
faint but still visible in a single scan. This setting applies
some more aggressive filtering of the timestreams, and
extended structures. It will result in applying the con-
figuration settings found in ‘faint.cfg’. See bright and
deep.

fillgaps fillgaps={True, False} Fill any gaps in the timestream data with empty frames
so that time windows in the reduction work as expected
and that no surprise discontinuities can cause real trou-
ble.

filter
[filter]
value={True, False}

Activate spectral filtering of timestreams. The filter
components are set by filter.ordering and can be con-
figured and activated separately. See crushbugs, fil-
ter.ordering, filter.motion, filter.kill, and filter.whiten.

filter.kill
[filter]
[[kill]]
value={True, False}

Allows completely quenching certain frequencies in the
timestream data. To activate, both this option and the
filter umbrella option must evaluate as True. The bands
of the kill-filter are set by filter.kill.bands.

filter.kill.bands
[filter]
[[kill]]
bands=<f1>:<f2>,
<f3>:<f4>, . . .

Provide a comma-separated list of frequency ranges (Hz)
that are to be quenched by the kill filter. E.g.:

filter.kill.bands=0.35:0.37,9.8:10.2.
See filter and filter.kill.

filter.motion
[filter]
[[motion]]
value={True, False}

The (typically) periodic motion of the scanning can in-
duce vibrations in the telescope and instrument. Since
these signals will be in sync with the scanning motion,
they will produce definite mapping artifacts (e.g. broad
pixels near the map edges). The motion filter lets you
perform spectral filtering on those frequencies where
most of the scanning motion is concentrated. To acti-
vate, bot this option and the filter umbrella options must
be set. The identification of rejected motion frequencies
is controlled by the filter.motion.s2n filter.motion.above,
and filter.motion.range sub-keys.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
56

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

filter.motion.above
[filter]
[[motion]]
above=X

The fraction, relative to the peak spectral component of
the scanning motion, above which to filter motion. E.g.:

filter.motion.above=0.1
will identify components that are at least 10% of
the main component amplitude. See filter.motion, fil-
ter.motion.s2n, and filter.motion.range.

filter.motion.harmonics
[filter]
[[motion]]
harmonics=<N>

Kill not just the dominant motion frequencies, but also
up to N harmonics of these. This may be useful when
the motion response is non-linear. Otherwise, it’s an
overkill. See filter.motion.odd.

filter.motion.odd
[filter]
[[motion]]
odd={True, False}

When set, together with the filter.motion.harmonics set-
ting, this option instructs SOFSCAN to restrict the
motion filter to the odd harmonics only of the prin-
ciple frequencies of the scanning motion. See fil-
ter.motion.harmonics.

filter.motion.range
[filter]
[[motion]]
range=<min>:<max>

Set the frequency range (Hz) in which the motion filter
operates. See filter.motion, filter.motion.above, and fil-
ter.motion.s2n.

filter.motion.s2n
[filter]
[[motion]]
s2n=<X>

The minimum significance of the motion spectral com-
ponent to be considered for filtering. See filter.motion,
filter.motion.above, and filter.motion.range.

filter.motion.stability
[filter]
[[motion]]
stability=<X>

Define a stability timescale (seconds) for the motion re-
sponse. When not set, it is assumed that the detectors
respond to the same amount to the vibrations induced by
the scanning motion during the entire duration of a scan.
If a timescale shorter than the scan length is set, then the
filtering will become more aggressive to incorporate the
AM modulation of detector signals on timescales shorter
than this stability value. See filter.motion.range and fil-
ter.motion.stability.

filter.mrproper
[filter]
mrproper={True, False}

Enables the explicit re-levelling of the filtered signal. In
practice, the re-levelling is unlikely to significantly im-
prove the filter’s effectiveness. At the same time, it does
slow it down somewhat, which is why it is off by default.

filter.ordering
[filter]

ordering=<filter1>,<filter2>,. . .

A comma-separated list of spectral filters, in the or-
der they are to be applied. The default is ‘motion,
kill, whiten’ which firstly applies the motion filter, then
kills specified spectral bands, and finally applies noise
whitening on the remainder. Each of the components
can be controlled separately with the appropriate sub-
keys of filter with the same names. See filter.motion, fil-
ter.whiten, and filter.kill.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
57

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

filter.whiten
[filter]
[[whiten]]
value={True, False}

Use a noise whitening algorithm. White noise assures
that the noise in the map is independent pixel-to=pixel.
Otherwise noise may be correlated on specific scales.
Whitening is also useful to get rid of any signals (still)
not modelled by other reduction steps. It should always
be a last resort only, as the modeling of signals is gen-
erally preferred. To activate, both this option and the
filter umbrella option must evaluate to True. See filter,
whiten, filter.whiten.level, filter.whiten.minchannels, and
filter.whiten.proberange.

filter.whiten.level
[filter]
[[whiten]]
level=<X>

Specify the noise whitening level at X times the aver-
age (median) spectral noise level. Spectral channels that
have noise in excess of the critical level will be appro-
priately filtered to bring them back in line. Value clearly
above 1 are recommended, and typically values around
1.5-2 are useful without over filtering. See filter.whiten.

fil-
ter.whiten.minchannels [filter]

[[whiten]]
minchannels=<N>

Make sure that at least N channels are used for estimating
the white noise levels, even if the specified probe range
is smaller of falls outside of the available spectrum. In
such cases, SOFSCAN will automatically expand the re-
quested range to include at least N spectral channels,
or as many as possible if the spectral range itself is too
small. See filter.whiten and filter.whiten.proberange.

filter.whiten.proberange
[filter]
[[whiten]]

proberange={<from>:<to>,
auto}

Specify the spectral range (Hz) in which to measure the
white noise level before whitening. It is best to use the
truly flat part of the available spectral range where no 1/f,
resonances, or lowpass roll-off are present. Wildcards
(‘*’) can be used for specifying open ranges. ‘auto` can
be used to automatically adjust the probing range to the
upper part of the spectrum occupied by point sources.
See filter.whiten and filter.whiten.minchannels.

final
Alias: iteration.-1

[final]
<key>=<value>
. . .

An alias for settings to be applied on the last iteration.
See last.

fits.<key> <configura-
tion_key>={?fits.<key>}

A way to reference FITS header keyword values from
the configuration. For example:

intcalfreq={?fits.DIAG_HZ}
will always retrieve ‘intcalfreq’ in the configuration from
the ‘DIAG_HZ’ key in the FITS header.

fits.addkeys
Telescope: SOFIA

[fits]

addkeys=<key1>,<key2>,. . .

Specify a comma-separated list of keys that should be
migrated from the first scan to the image header, in ad-
dition to the list of required SOFIA header keys.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
58

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

fixjumps
Instrument: HAWC+

[fixjumps]
value={True, False}

Attempt to ‘fix’ residual flux jumps that result from
imprecise correction in the MCE. Long jumps are re-
levelled, while shorter ones are flagged out to minimize
impact on source structure. Alternatively, the same can
be applied on a per-subarray basis as well as via the
fixjumps.<sub> option.

fixjumps.<sub>
Instrument: HAWC+

[fixjumps]
<sub> = {True, False}

The same as fixjumps but performed on a per-subarray
basis. <sub> may be currently one of {r0, r1, t0, t1}.

flag
[flag]
<field>=<list>
. . .

Flag channels based on ranges of values or values within
certain ranges. Here, <field> refers to a specific attribute
of the channel data on which to base the flagging. For
example:

[flag]
col=10,20:22
pin_gain=-1:0

Would flag channel columns 10, 20, 21, and 22 and any
channels where pin gain is between -1 and 0. All such
channels will be flagged as ‘DEAD’ and this process oc-
curs only once following a scan read. Note that <list>
may contain range elements with * marking an open
bound. the colon (:) is preferred over hyphen (-) to mark
ranges in order to effectively distinguish negative num-
bers, although a hyphen will still work as expected for
purely positive values.

flatweights flatweights={True, False} Override the channel weights from pixeldata with their
average value. This way all channels carry the same uni-
formed initial weight. It can be useful when the pixel-
data weights are suspect for some reason.

focalplane
Sets: system=focalplane

focalplane={True, False} Produce maps in focal-plane coordinates. This is prac-
tical only for beam-mapping. Thus, focal-plane coordi-
nates are default when source.type is set to ‘pixelmap’.
See pixelmap and source.type.

forget forget=<key>, . . . Forget any prior values set for <key>, effectively remov-
ing it from the configuration. New values may always
be set, but you may also re-set a previously forgotten
key using the recall command. If <key> is set to ‘con-
ditionals’ or ‘blacklist’, all currently stored conditionals
or blacklisted keys will be removed. See blacklist and
conditionals.

frames frames=<from>:<to> Read only the specified frame ranges from the data.
Maybe useful for quick peeks at the data without pro-
cessing the full scan, or when a part of the data is cor-
rupted near the start or end of a scan.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
59

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

gain gain=<X> Specify an instrument gain of X from the detector stage
(or fixed signal stage) to the readout. Many instruments
may automatically determine the relevant gain based on
their data headers. For others, the gains may have to be
adjusted by hand, especially if they are changing. Upon
reading the scans, SOFSCAN will divide all data by the
specified value, to bring all scans to a comparable signal
level Conversions to jansky area referenced to such gain-
scaled data. See jansky, dataunit, and scale.

gainnoise gainnoise=<X> Add noise to the initial gains. There is not much use for
this option, other than checking the robustness of the re-
duction on the initial gain assumption. Since gains are
usually measured in the reduction itself, typical reduc-
tions should not depend a lot on the initial gain values.
See uniform.

gains
[gains]
value={True, False}

Solve for pixel gains based on their response to the
correlated noise (above). If not specified, then all
decorrelation steps will proceed without a gain solu-
tion. A model-by-model control is offered by the corre-
lated.<modality>.nogains option. See gains.estimator
and correlated.<modality>.nogains.

gains.estimator
[gains]
estimator={median,
maximum-likelihood}

Specify the type of estimator (‘median’ or ‘maximum-
likelihood’) to be used for estimating pixel gains
to correlated signals. See estimator and corre-
lated.<modality>.

gains.span
[gains]
span={True, False}

Make the gains of all correlated modalities span
scans instead of integrations (subscans). See corre-
lated.<modality>.span.

galactic
Sets: system=galactic

galactic={True, False} Reduce using new galactic coordinates (for mapping).
See system, equatorial, and altaz.

gradients
Alias:
correlated.gradients

[gradients]
value={True, False}

Shorthand for the decorrelation of gradients across the
detector array. Such gradients can occur as a result of
spatial sky-noise, or as temperature variation across the
detectors. See correlated.<modality>.

grid grid={<X> or
<dx>,<dy>}

Set the map pixelization to X arcseconds. Pixelization
smaller than 2/5 of the beam is recommended. The de-
fault is ~1/5 of the beam. Non-square pixelization can
be specified using <dx>,<dy> in arcseconds.

group
[group]
<name>=10:20,45,50:60
. . .

Specify a list of channels by IDs or fixed index (usually
the same as storage index C-style 0-based), or ranges
thereof that ought to belong to a group with name
<name>. See division.<name>.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
60

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

gyrocorrect
Instrument: HAWC+

[gyrocorrect]
<options. . .>

If present in the configuration, correct for gyrodrifts
based on guide-star relock data stored in the scan head-
ers. This is not normally needed when the gyros func-
tion properly. Occasionally however, they drift a fair bit,
and this option can activate the correction scheme on de-
mand. See gyrocorrect.max.

gyrocorrect.max
Instrument: HAWC+

[gyrocorrect]
max=<X>

Set a limit to how large of a gyro drift can be corrected
for. When drifts larger than X arcseconds are found in
the scan, the correction is skipped for single scan reduc-
tions or dropped from the set in multi-scan reductions.

horizontal
Sets: system=horizontal

horizontal={True, False} Reduce in horizontal coordinates (for mapping). This is
often useful for determining pointing offsets or for pixel
location mapping. See system and pixelmap.

indexing
[indexing]
value={True, False}

Allow the use of data indexing to speed up coordinate
calculations for mapping. Without indexing the map
coordinates are calculated at each mapping step. This
can be slow because of the complexity of the spherical
projections, which often require several complex math
evaluations. With indexing enabled, the calculations are
only performed once, and the relevant data is stored for
future use. However, this increases the memory require-
ment of SOFSCAN. This, indexing may be disabled for
very large reductions. Alternatively, one may control the
amount of memory such indexing may use via the index-
ing.saturation option. See grid.

indexing.saturation
[indexing]
saturation=<X>

Specify the maximum fraction X of the total available
memory that can be filled before indexing is automat-
ically disabled. Given a typical 20% overhead during
reduction, values below 0.8 are recommended to avoid
overflows. See indexing.

invert invert={True, False} Invert signals. This setting may be useful in creating
custom jackknives, where the user wishes to retain con-
trol over which scans are inverted. See gain, scale, and
jackknife.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
61

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

iteration
[iteration]
[[<N>, <X>, <x%>]]
<key>=<value>
. . .

Use as a condition to delay settings until the Nth itera-
tion. E.g:

[iteration]
[[3]]
smooth=halfbeam

will specify half-beam smoothing beginning on the 3rd
iteration. Note that the first iteration is numbered as 1.
Negative values for N are relative to the last iteration at
-1. For example, -2 references the penultimate iteration.
A fraction X or percentage x may also be supplied rela-
tive to the maximum number of rounds. For example, for
a reduction with 10 rounds, the following settings will all
be triggered on the 5th iteration:

[iteration]
[[5]]
smooth=5.0
[[0.5]]
smooth=6.0
[[-6]]
smooth=7.0
[[50%]]
smooth=8.0

SOFSCAN will parse options as they are encountered in
the configuration, so the resultant smooth setting on the
5th round will by 8.0.

jackknife
[jackknife]
value={True, False}

Jackkniving is a useful technique to produce accu-
rate noise maps from large datasets. When the op-
tion is used, the scan signals are randomly inverted so
that the source signals in the large datasets will tend
to cancel out, leaving noise maps. The sign inver-
sion is truly random in which repeated runs with the
‘jackknife’ flag will produce differenct jackknives ev-
ery time. If you want more control over which scans
are inverted, consider using the invert flag instead. See
invert, scramble, jackknife.frames, jackknife.channels,
and jackknife.alternate.

jackknife.alternate
[jackknife]
alternate={True, False}

Rather than randomly inverting scans for a jackknife, this
option will invert every other scan. This may be pre-
ferred for small datasets, because it leads to better can-
cellation of source signals, especially with an even num-
ber of scans, chronologically listed. To have the desired
effect, use instead of jackknife, rather than together with
it (otherwise, the ordered inversion will simply com-
pound the random method of the standard jackknife.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
62

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

jackknife.channels
[jackknife]
channels={True, False}

Jackknife channels, such that they are randomly inverted
for the source model. Beware however, that channel-
wise jackknives are not as representative of the true
noise as the regular scan-wise jackknife, because they
will reject spatial correlations and instrumental channel-
to-channel correlations. See jackknife, jackknife.frames,
and scramble.

jackknife.frames
[jackknife]
frames={True, False}

Jackknife frames, such that they are randomly inverted
for the source model. Beware however, that frame jack-
knives are not as representative if the true noise as the
regular scan-wise jackknife, because they will reject tem-
poral correlations.

jansky
[jansky]
value=<X>

Specify the calibration factor from dataunit to Jy such
that Jansky’s = dataunit * X. See dataunit, gain, and jan-
sky.inverse.

jansky.inverse
[jansky]
inverse={True, False}

When used, the jansky definition is inverted to mean Jy
to dataunit such that dataunit = X * Jansky’s.

k2jy k2jy=<X> The Jy/K conversion factor to X. This allows SOFSCAN
to calculate a data conversion to units of Kelvin if jansky
is also defined. Alternatively, the conversion to Kelvins
can be specified directly via the kelvin key.

kelvin kelvin=<X> Set the conversion to units of Kelvin (or more precisely,
to K/beam units). X defines the equivalent value of 1
K/beam expressed in the native dataunit. See dataunit,
jansky, and k2jy.

lab
Sets:
blacklist=source,
filter.motion, tau, filter,
whiten, shift, point
forget=downsample
write.spectrum=True

lab={True, False} A conditional switch that indicates no astronomical ob-
servation was made. Effectively disables most tasks re-
lated to telescope motion or source derivation, and in-
stead writes channel spectra to file. See write.spectrum.

last
Alias: iteration.-1

[last]
<key>=<value>
. . .

An alias for settings to be applied on the last iteration.
See final.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
63

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

lock lock=<key1>,<key2>,. . . Set a persistent option value that cannot be changed,
cleared, or blacklisted later (e.g. by conditionally acti-
vated settings). Users may use locks to ensure that their
manually set reduction options are applied and never
overridden. For the lock to take effect, the option must
not be blacklisted or locked to a different value before.
The value of a key will be set to its current value. To
release a lock, the unlock command may be issued. See
unlock and blacklist.

los
Instrument: HAWC+
Alias: correlated.los

[los]
value={True, False}

Remove correlations with the second-derivative to the
telescope line-of-sight (LOS) angle. It is a good proxy
for removing pitch-type acceleration response from the
detector timestream. See correlated.<modality>.

map
Sets: source.type=map

map={True, False} A switch to produce a source map on output.

mappingfraction mappingfraction=<X> Specify a minimum fraction of pixels (X) in the array
that have to remain unflagged for creating a map from
the scan. If too many pixels are flagged in the reduction,
it may be a sign of bigger problems, questioning the reli-
ability of the scan data. It is best to skip over problematic
scans in order to minimize their impact on the mapping.
See mappingpixels.

mappingpixels mappingpixels=<N> Specify a minimum number of pixels (N) which have to
be unflagged by the reduction in order for the scan to
contribute to the mapping step. See mappingfraction.

map.size
[map]
size=<dx>{x or X or , or
tab or :}<dy>

Explicitly set the size of the mapped area centered on
the source to a dx by dy arcseconds rectangle. Normally,
the map size is automatically calculated to contain all of
the data. One may want to restrict mapping to smaller
regions (outside of which there should be no bright sig-
nals). See system.

moving moving={True, False} Explicitly specify that the object is moving in the ce-
lestial frame (such as solar system objects like plants,
asteroids, comets, and moons). This way, data will be
properly aligned on the coordinates of the first scan. If
the data headers are correctly set up (and interpreted by
SOFSCAN), moving objects can be automatically de-
tected. This option is there in case things do not work as
expected (e.g., if you notice that your solar system ob-
ject smears or moves across the image with the default
reduction. Currently, this option forces equatorial coor-
dinates. This option is also aliased as planetary. See
system.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
64

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

multibeam
Sets:
source.type=multibeam

multibeam={True, False} An alias for setting the source type to multibeam.

name name=<filename> Specify the output image filename, relative to the direc-
tory specified by outpath. When not given, SOFSCAN
will choose a file name based on the source name and
scan number(s), which is either:

<sourcename>.<scanno>.fits
or:

<sourcename>.<firstscan>-<lastscan>.fits
For mapping, other source model types (e.g. skydips or
pixel maps) may have different default naming conven-
tions.

nefd.map
[nefd]
map={True, False}

True to use apparent map noise (if available, e.g. via
weighting.scans) to refine the reported NEFD estimate.
Else, the NEFD estimate will be based on the timestream
noise alone.

noiseclip noiseclip=<X> Flag (clip) map pixels with a noise level that is more than
X times higher than the deepest covered parts of the map.
See exposureclip and clip.

noslim noslim={True, False} After reading the scans, SOFSCAN will discard data
from channels flagged with a hardware problem to free
up memory, and to speed up the reduction. This option
overrides this behaviour, and retains all channels for the
reduction whether used or not.

notch
[notch]
value={True, False}

Enable notch filtering the raw detector timestreams be-
fore further initial processing (e.g. downsampling). The
sub-options notch.frequencies, notch.harmonics. and
notch.width are used to customize the notch filter re-
sponse.

notch.frequencies
[notch]
frequencies=<freq1>,
<freq2>,. . .

A comma-separated list of frequencies (Hz) to
notch out from the raw detector timestreams. See
notch.harmonics. and notch.width.

notch.harmonics
[notch]
harmonics=<N>

Specify that the notch filter should also notch out N har-
monics of the specified notch.frequencies. If not set,
only the list of frequencies are notched, i.e. the same
as ‘harmonics=1’. For example:

notch.harmonics=2
will notch out the list of frequencies set by
notch.frequencies as well as their second harmon-
ics. See notch.frequencies and notch.width.

notch.width
[notch]
width=<X>

Set the frequency width (Hz) of the notch filter response.
See notch.frequencies.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
65

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

obstime
[conditionals]

[[obstime<operator><T>]]
<key>=<value>
. . .

Configure settings based on the total observing time of
all input scans. The total obstime is compared agains T
(seconds) using <operator>, and all settings are applied
if the requirement is met. For example:

[conditionals]
[[obstime>60]]
stability=10

will set the stability value to 10 if the total observation
time is longer than one minute. Nesting obstime condi-
tions is possible with some limitations. It is evaluated
only once, after all scans have been read. Thus, the con-
dition will have no effect if activated later (e.g. if nested
inside an iteration condition).

offset
Instrument: HAWC+

[offset]
<sub>=<dx>,<dy>
. . .

Specify subarray offsets. For HAWC+ <sub> may take
values of ‘R0’, ‘R1’, ‘T0’, and/or ‘T1’. dx and dy are in
units of pixels. See rotation.

offsets
Sets: forget=drifts

offsets={True, False} Remove the residual DC offsets from the bolometer sig-
nals using the ‘offsets’ task in ordering rather than drifts.

ordering order-
ing=<task1>,<task2>,. . .

Specify the order of pipeline elements as a
comma-separated list of keys. See offsets, corre-
lated.<modality>, whiten, and weighting.frames.

organization
Telescope: SOFIA

organization=<text> Specify the organization at which SOFSCAN is being
used for reducing data. The value of this option is stored
directly in the FITS ORIGIN header key as required by
the DCS. If you want the ORIGIN key to be set prop-
erly, you might consider adding the organization option
to ‘~/.sofscan/sofia/default.cfg’ as ‘SOFIA Science and
Mission Ops’.

outpath
[outpath]
value=<directory>

Specify the output path where all SOFSCAN output will
be written (including maps etc.). If not specified, will
default to the current working directory.

outpath.create
[outpath]
create={True, False}

When set, the output path will be automatically created
as necessary. If not, SOFSCAN will exit with an error if
the output path does not exist. See outpath.

parallel.idle
[parallel]
cores={N, x, X%}

Instruct SOFSCAN to use N number of CPU cores, frac-
tion x of available processors, or X percent of available
processors. By default SOFSCAN will try to use 50%
of the processing cores in your machine for decent per-
formance without taking up too many resources. This
option allow modification of this behaviour according to
need.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
66

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

parallel.idle
[parallel]
idle={N, x, X%}

Instruct SOFSCAN to avoid using N number of CPU
cores, fraction x of available processors, or X percent
of available processors.

parallel.jobs
[parallel]
jobs={N, x, X%}

Instruct SOFSCAN to allow a maximum of N jobs, frac-
tion x of available cores, or X percent of available cores.
The maximum number of cores is set by parallel.idle
or parallel.cores. This relates not only to the number
of cores, but the number of threads inside each core, so
that:

cores * threads <= parallel.jobs
The default is -1, indicating that the number of jobs is
capped by the number of cores.

parallel.mode
[parallel]
mode=<mode>

Set the parallel processing mode. <mode> may be one
of:

• scans: process scans in parallel.
• ops: process each scan with parallel threads where

possible.
• hybrid: process as many scans in parallel as pos-

sible, each with an optimal number of threads.
The default mode is ‘hybrid’.

pcenter
Instrument: HAWC+

pcenter={<X> or
<x>,<y>}

Specify the boresight position (pixels) on the detector
array. If a single value <X> is given, it will be applied
to both the <x> and <y> directions (columns and rows).

peakflux
Instrument: HAWC+

peakflux={True, False} Switch to peak-flux calibration instead of the default
aperture flux calibration. Recommended for point
sources only.

perimeter perimeter={<N>, auto} To speed up the sizing of the output image for large ar-
rays (e.g. HAWC+) do not use the positions of each and
every pixel. Instead, identify a set of pixels that define
an array perimeter from N sections around the centroid
of the array. N values up to a few hundred should be fail-
safe for most typical array layouts, even when these have
lots of pixels.

phases
[phases]
value={True, False}

Decorrelate the phase data (e.g. for chopped observa-
tions) for all correlated modes. Alternatively, phase
decorrelation can be turned on individually using the
correlated.<modality>.phases options.

phases.estimator
[phases]
estimator={median,
maximum-likelihood}

Overrides the global estimator setting for the phases (e.g.
chopper phases). The estimator may be either ‘median’
or ‘maximum-likelihood’. If neither of these, it will de-
fault to ‘maximum-likelihood’. If not set, the global es-
timator will be used.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
67

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

phasedspike phasedspike={True,
False}

When set, the phase data (such as position-switched
phases) will be despiked together with the regular high-
frequency despiking. The despiking level is the same as
for the despike.level option. See despike, despike.level,
and phaseweights.

phasegains phasegains={True, False} Use the information in the phases to calculate gains for
all correlated modes. The default is to use the fast sam-
ples for calculating gains. Alternatively, you can set this
property separately for each correlated modality using
correlated.<modality>.phasegains.

phaseweights phaseweights={True,
False}

When set, SOFSCAN will calculate proper noise
weights for the phase scan data as well as the high-
frequency timestream, under the expectation that the
phase noise can be dominated by 1/f-type behaviour on
the relevant timescales. the calculation of phase weights
improves the reliability of the photometry. See weight-
ing, phases, and chopped.

pixeldata pixeldata=<filename> Specifies a pixel data file, providing initial gains,
weights, and flags for detectors, and possibly other in-
formation as well depending on the specific instrument.
Such files can be produced via the write.pixeldata op-
tions (in addition to which you may want to specify ‘for-
get=pixeldata’ so that flags are determined without prior
bias). See gainnoise, uniform, flag, and blind.

pixelmap
Sets:
source.type=pixelmap

[pixelmap]
value={True, False}

Effectively the same as ‘source.type=pixelmap’ which
is invoked by a condition. Used for reducing pixel map
data. Instead of making a single map from all pixels,
separate maps are create for each pixel. (Note, this can
chew up some memory if you have a lot of pixels). At the
end of the reduction, SOFSCAN determines the actual
pixel offsets in the focal plane. See source.type, skydip,
and grid.

pixelmap.process
[pixelmap]
process={True, False}

Specify that pixel maps should undergo the same post-
processing steps (e.g. smoothing, clipping, filtering,
etc.) that are used for regular map-making. When
the option is not set, pixel maps are used in their raw
maximum-likelihood forms. See pixelmap and pix-
elmap.writemaps.

pixelmap.writemaps
[pixelmap]
writemaps={True, False,
<list>}

Pixel maps normally only produce the pixel position in-
formation as output. Use this option if you want SOFS-
CAN to write individual pixel maps as well. See pix-
elmap and pixelmap.process. You can specify which
pixels to write by setting <list> which may contain
comma-separated values or ranges referring to the inte-
ger fixed channel indices. For example:

pixelmap.writemaps=10,15:17
would write pixel maps for channels 10, 15, 16, and 17.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
68

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

pixels
[pixels]
<options. . .>

Set user defined options relating to how the initial chan-
nel data is read and validated. See pixeldata and rcp.

pixel.criticalflags
[pixel]
criticalflags=<flag1>,
<flag2>,. . .

Determines which flags present in the initial channel
data should continue to mark a channel as being flagged
for the remainder of the reduction (unless removed by
another reduction step). The <flag> arguments may take
the form of an integer, letter, or string (e.g. ‘G’, ‘GAIN’,
or 4). Note that channel flags are usually specific to dif-
ferent instruments, so please ensure such flags are de-
fined correctly. For example, a pixeldata file may define
one channel as spiky (‘s’) but if ‘SPIKY’ is not included
in the critical flags, that channel will not flagged as such
at the start of the reduction. The default critical flags are
‘GAIN’, ‘DEAD’, and ‘DISCARD’.

pixels.coupling.range
Instrument: HAWC+

[pixels]
[[coupling]]
range=<min>:<max>

Specify a valid range of coupling values for the initial
channel data. Standard range syntax is observed such
that * may indicated an unbounded limit. Any chan-
nel that has a coupling value outside of this in the initial
channel data will be flagged as ‘DEAD’.

pixels.coupling.exclude
Instrument: HAWC+

[pixels]
[[coupling]]
exclude=<x1>,<x2>,. . .

Flag channels with a coupling equal to certain values as
‘DEAD’ in the initial channel data. For example:

pixels.coupling.exclude=0,1
would flag channels with initial coupling values exactly
equal to 0 or 1 as ‘DEAD’.

pixels.gain.range
Instrument: HAWC+

[pixels]
[[gain]]
range=<min>:<max>

Specify a valid range of gains for the initial channel data.
Standard range syntax is observed such that * may indi-
cated an unbounded limit. Any channel that has a gain
value outside of this in the initial channel data will be
flagged as ‘DEAD’.

pixels.gain.exclude
Instrument: HAWC+

[pixels]
[[gain]]
exclude=<x1>,<x2>,. . .

Flag channels with gain equal to certain values as
‘DEAD’ in the initial channel data. For example:

pixels.gain.exclude=0,1
would flag channels with initial gain values exactly equal
to 0 or 1 as ‘DEAD’.

pixelsize
Instrument: HAWC+

pixelsize={<X> or
<x>,<y>}

Specify the pixel sizes (arcseconds) for the detector ar-
ray.

planetary
Alias: moving

planetary={True, False} An alias for moving.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
69

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

point point={True, False} This is a convenience key for triggering settings for re-
ducing pointing scans. By default, it invokes:

[iteration]
[[last]]
pointing.suggest=True

i.e. suggesting the pointing corrections in the last
iteration. See pointing, pointing.suggest and point-
ing.method.

pointing
[pointing]
value={<x>,<y> or
suggest}

Specify pointing corrections, or the way these should be
derived. The following values are accepted:

• <x>,<y>: Specify relative pointing offsets as
comma-separated values (arcseconds) in the sys-
tem of the telescope mount. I.e., these should
be horizontal offsets for ground-based telescopes
with an Alt/Az mount. Some instruments may al-
low more ways to specify pointing corrections.

• suggest: Suggest pointing offsets (at the end of
the reduction) from the scan itself. This is only
suitable when reducing compact pointing sources
with sufficient S/N to be clearly visible in single
scans.

See point.
pointing.exposureclip

[pointing]
exposureclip=<X>

Clip away the underexposed part of the map, below a
relative exposure X times the most exposed part of the
map. This option works similarly to the exposureclip
option, but applies only to the map used for deriving the
pointing internally.

pointing.lsq
[pointing]
lsq={True, False}

Attempt to fit the pointing using Least-Squares method
rather than the chosen pointing.method. This will usu-
ally result in a better fit, but does not always successfully
converge when the source is not easily modelled by a
Gaussian. In case the LSQ method fails, a secondary
attempt will be made using pointing.method.

pointing.method
[pointing]
method={centroid,
position, peak}

Specify the method used for obtaining positions of point-
ing sources. The available methods are:

• peak: Take the maximum value as the peak loca-
tion.

• centroid: Take the centroid as the peak location.
• position: The same as ‘peak’.

See pointing.suggest.
pointing.radius

[pointing]
radius=<X>

Restrict the pointing fit to a circular area, with radius
X (arcseconds), around the nominal map center. it may
be useful for deriving pointing in a crowded field. See
pointing.suggest.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
70

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

pointing.significance
[pointing]
significance=<X>

Set the significance (S/N) level required for pointing
sources to provide a valid pointing result. If the option
is not set, a value of 5.0 is assumed.

pointing.suggest
[pointing]
suggest={True, False}

Fit pointing for each input scan at the end of the re-
duction. It can also be triggered by the point short-
hand (alias), and may be enabled by default for cer-
tain types of scans, depending on the instrument.
E.g., for HAWC+, pointing fits are automatically en-
abled for short single-scan reductions. See point-
ing.significance, pointing.radius, pointing.exposureclip,
and pointing.method.

pointing.tolerance
[pointing]
tolerance=<X>

Control how close (relative to the beam FWHM) the tele-
scope pointing must be to its target position for deter-
mining photometry. A distance of 1/5 beams can result
in a 10% degradation on the boundaries, while the sig-
nal would degrade by 25% at 1/3 beams distance. This
setting has no effect outside of photometry reductions.
See phases and chopped.

positions.smooth
[positions]
smooth=<X>

Specify that the telescope encoder data should be
smoothed with a time window X seconds wide in order
to minimize the effects on encoder noise on the calcula-
tion of scanning speeds and accelerations. These calcu-
lations may result in data being discarded, and are used
in determining the optimal downsampling rates. See
aclip, vclip and downsample.

projection projection=<name> Choose a map projection to use. The following projec-
tions are available:

• SFL: Sanson-Flamsteed
• SIN : Slant Orthographic
• TAN : Gnomonic
• ZEA: Zenithal Equal Area
• MER: Mercator
• CAR: Plate-Carree
• AIT : Hammer-Aitoff
• GLS: Global Sinusoidal
• STG: Stereographic
• ARC: Zenithal Equidistant

See system, grid and map.size.

pwv41k
Telescope: SOFIA

pwv41k=<X> Set a typical PWV value to X microns at 41k feet alti-
tude. See tau.pwvmodel and pwvscale.

pwvscale
Telescope: SOFIA

pwvscale=<X> The typical water vapor scale height (kft) around 41 kilo-
feet altitude. See tau.pwvmodel and pwv41k.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
71

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

radec
Sets: system=equatorial

radec={True, False} Reduce using equatorial coordinates for mapping (de-
fault). See altaz and system.

range
[range]
value=<min>:<max>

Set the acceptable range of data (in units it is stored).
Values outside of this range will be flagged, and pixels
that are consistent offenders will be removed from the re-
duction (as set by range.flagfraction. See dataunit, and
range.flagfraction.

range.flagfraction
[range]
flagfraction=<X>

Specify the maximum fraction of samples for which a
channel can be out of range (as set by range) before that
channel is flagged and removed from the reduction. See
range.

rcp
[rcp]
value=<filename>

Use the RCP file from <filename>. RCP files can be pro-
duces by the pixelmap option from scans and for certain
instruments, when the observation moves a bright source
over all pixels. For rectangular arrays, pixel positions
can also be calculated on a regular grid using pixelsize
and pcenter. See pixelmap, pixelsize, and pcenter

rcp.center
[rcp]
center=<x>,<y>

Define the center RCP position at x, y in arcseconds.
Centering takes place immediately after the parsing of
RCP data. See rcp.

rcp.gains
[rcp]
gains={True, False}

Calculate coupling efficiencies using gains from the RCP
files. Otherwise, uniform coupling is assumed with sky
noise gains from the pixeldata file. See rcp.

rcp.rotate
[rcp]
rotate=<X>

Rotate the RCP positions by X degrees (anti-clockwise).
Rotations take place after centering (if specified). See
rcp.

rcp.zoom
[rcp]
zoom=<X>

Zoom (rescale) the RCP position data by the scaling fac-
tor X. Rescaling takes place after the centering (if de-
fined). See rcp.

recall recall=<key1>,<key2>,. . . Undo forget, and reinstates <key> to its old value. See
forget.

regrid regrid=<X> Re-grid the final map to a different grid than that used
during the reduction where X is the final image pixel size
in arcseconds. See grid.

resolution resolution=<X> Define the resolution of the instrument. For single color
imaging arrays, this is equivalent to beam with X speci-
fying the instrument’s main beam FWHM in arcseconds.
Other instruments (e.g. heterodyne receivers) may inter-
pret ‘resolution’ differently. See beam.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
72

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

roll
Instrument: HAWC+
Alias: correlated.roll

[roll]
value={True, False}

Remove correlations with the second-derivative of the
aircraft roll angle (roll-type accelerations). See corre-
lated.<modality>.

rotation
[rotation]
value=<X>

Define the instrument rotation X in degrees if applicable.

rotation.<sub>
Instrument: HAWC+

[rotation]
<sub>=<X>

Specify subarray rotations X (degrees) where <sub can
be R0, R1, T0, and/or T1.

rounds rounds=<N> Iterate N times. You may want to increase the number of
default iterations either to recover more extended emis-
sion (e.g. when extended is set), or to go deeper (es-
pecially when the faint or deep options are used). See
iteration, extended, faint, and deep.

rows
Instrument: HAWC+
Alias: correlated.rows

[rows]
value={True, False}

Decorrelate on detector rows, or set options for it. See
correlated.<modality>.

rtoc
Instrument: HAWC+

rtoc={True, False} Instruct SOFSCAN to reference maps to Real-Time Ob-
ject Coordinates (RTOC) for sidereal and non-sideral
sources alike. Normally, sidereal object coordinates are
determined via the header keywords OBSRA/OBDEC
or OBJRA/OBJDEC. However, these were not always
filled correctly during the 2016 October flights, so this
option provides a workaround in those scans.

scale scale={<X>, <filename>} Set the calibration scaling of the data. The following
values are available:

• X: An explicit scaling value X, by which the entire
scan data is scaled.

• filename: The name of a calibration file which
among other things, contains the ISO timestamp
and the corresponding calibration values for

Note: not all instruments support the <filename> value.
See tau, gain, invert, and jackknife.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
73

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

scanmaps scanmaps={True, False} When specified, a map will be written for each scan
(every time it is solved), under the name ‘scan-
<scanno>.fits’ in the usual output path. Best to use as:

[iteration]
[[final]]
scanmaps=True

To avoid unnecessary writing of scan maps for every it-
eration. See final and source.

scanpol
Instrument: HAWC+
Sets: config=scanpol.cfg

scanpol={True, False} Use for scanning polarimetry scans with HAWC+.
Reads and applies the ‘scanpol.cfg’ configuration file.

scramble scramble={True, False} Make a map with inverted scanning offsets. Under the
typical scanning patterns, this will not produce a coher-
ent source. Therefore, it is a good method for checking
on the noise properties of deep maps. The method essen-
tially smears the source flux all over the map. While not
as good as jackknife for producing pure noise maps, jack-
knife requires a large number of scans for robust results
(because of the random inversion), whereas ‘scramble’
can be used also for few, or even single scans to nearly
the same effect.

segment segment=<X> Break long integrations into shorter ones, with a maxi-
mum duration of X seconds. It is the complement option
to subscan.merge, which does the opposite. ‘segment’
can also be used together with subscan.split to break the
shorter segments into separate scans altogether.

serial
[serial]
[[<scan_range>]]
<key>=<value>
. . .

Specify settings to apply when the scan’s serial num-
ber falls within a specified range. <scan_range> may be
specified as:

• *: always
• a:b: Falls between the range (a, b)
• >X: After serial number X
• >=X: From serial number X
• <X: Before serial number X
• <=X: Before and up to serial number X

shift shift=<X> Shift the data by X seconds to the frame headers. It can
be used to diagnose or correct for timing problems.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
74

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

signal-response signal-response={True,
False}

This is a diagnostic option and affects the log output of
decorrelation steps. When set, each decorrelation step
will produce a sequence of numbers, corresponding to
the normalized covariances of the detector signals in
each correlated mode in the modality. The user may
take this number as an indication of the importance of
each type of correlated signal, and make decisions as to
whether a decorrelation step is truly necessary. Values
close to 1.0 indicate signals that are (almost) perfectly
correlated, whereas values near zero are indicative of
negligible corrections. See correlated.<modality> and
ordering.

skydip
Sets: source.type=skydip

[skydip]
value={True, False}

Reduce skydip data instead of trying to make in impos-
sibly large map out of it. This option is equivalent to
specifying ‘source.type=skydip’ which is activated con-
ditionally instead of an alias.

skydip.elrange
[skydip]
elrange=<min>:<max>

Set the elevation range (degrees) to use for fitting the
skydip model. In some cases, either the data may be cor-
rupted at low or high elevations, or both. This is a useful
option to restrict the skydip data to the desired elevation
range. Use with caution to keep the skydip results ro-
bust. See skydip.

skydip.fit
[skydip]
fit=<p1>,<p2>,. . .

Specify the list of parameters to fit for the skydip model.
The standard model is:

y(EL) = kelvin * tsky * (1-exp(-
tau/sin(EL))) + offset

where parameters (<pN>) may be:
• kelvin: conversion from Kelvin to dataunits. See

kelvin, dataunit, and k2jy.
• tsky: sky temperature (in Kelvins). See sky-

dip.tsky.
• tau: the in band zenith opacity. See skydip.tau.
• offset: an offset in dataunits. See skydip.offset.

The default is to fit ‘kelvin’, ‘tau’, and ‘offset’, and as-
sume that the sky temperature is close to ambient. The
assumption os the sky temperature is not critical so long
as the conversion factor ‘kelvin’ is fitted to absorb an
overall scaling.

skydip.grid
[skydip]
grid=<X>

Set the elevation binning (arcseconds) of the skydip data.
See grid.

skydip.offset
[skydip]
offset=<X>

Specify the initial offset value in dataunit. See skydip.fit.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
75

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

skydip.tau
[skydip]
tau=<X>

Specify the initial in-band zenith opacity. See skydip.fit.

skydip.tsky
[skydip]
tsky=<X>

Specify the initial sky temperature in Kelvins. By de-
fault, the ambient temperature (if available) will be used.
See skydip.fit.

smooth
[smooth]
value={<X>, minimal,
halfbeam, 2/3beam,
beam, optimal}

Smooth the map by X arcsec FWHM beam. Smooth-
ing helps improve visual appearance, but is also useful
during reduction to create more redundancy in the data
in the intermediate reduction steps. Also, smoothing by
the beam is optimal for point source extraction from deep
fields. Therefore, beam smoothing is default with the
deep option (see ‘deep.cfg’). Typically you want to use
some smoothing during reduction, and you may want to
turn it off in the final map. Such a typical configuration
may look like:

smooth=9.0 # 9” smoothing at first
[iteration]
[[2]]
smooth=12.0 # smooth more later
[[last]]
forget=smooth # no smoothing at end

Other than specifying explicit values, you can use the
predefined values: ‘minimal’, ‘halfbeam’, ‘2/3beam’,
‘beam’, or ‘optimal’. See smooth.optimal, final,
source.filter, and grid.

smooth.external
(Not implemented yet)

[smooth]
external={True, False}

Do not actually perform the smoothing set by the
smooth option. Instead, use the smooth value as an as-
sumption in calculating smoothing-related corrections.
The option is designed for the reduction of very large
datasets, which have to be “split” into smaller, man-
ageable sized chunks. The unsmoothed outputs can be
coadded and then smoothed to the desired amount be-
fore feeding the result back for further rounds of reduc-
tion via source.model. See smooth, subscan.split, and
source.model.

smooth.optimal
[smooth]
optimal=<X>

Define the optimal smoothing for point-source extrac-
tion if it is different from beam-smoothing. For ar-
rays whose detectors are completely independent, beam-
smoothing produces the optimal signal-to-noise for
point sources. However, if the detectors are not indepen-
dent, the optimal smoothing may vary. This is expected
to be the case for some filled arrays, where one expects
a certain level of beam-sized photon correlations. See
smooth.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
76

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

source
[source]
value={True, False}

Solve for the source model, or set options for it.

source.correct
[source]
value={True, False}

Correct peak fluxes for the point source filtering effect
of the various reduction steps (default). The filtering of
point sources is carefully calculated through the reduc-
tion steps, this with the correction scheme, point source
fluxes ought to stay constant (within a few percent) in-
dependent of the pipeline configuration. See faint, deep,
bright, ordering, and whiten.

source.coupling
[source]
[[coupling]]
<options. . .>

If present in the configuration, (re-)calculate point
source coupling efficiencies (the ratio of point-source
and sky-noise response) as part of the source modeling
step. This is only really useful for bright sources. See
source.coupling.range.

source.coupling.range
[source]
[[coupling]]
range=<min>:<max>

Specify the range of acceptable coupling efficiencies rel-
ative to the “average” of all pixels when source.coupling
is used to calculate these based on bright source re-
sponses. Pixels with efficiencies outside of the specified
range will be flagged and ignored from further source
modeling steps until these flags are cleared again in the
reduction. See correlated.<modality>.gainrange.

source.coupling.s2n
[source]
[[coupling]]
s2n=<min>:<max>

Set the acceptable range of S/N required in the map for
using the position for estimating detector coupling gains
when the source.coupling option is enabled.

source.despike
[source]
[[despike]]
<options. . .>

If present in the configuration, despike the scan maps
using an S/N threshold of source.despike.level. Clearly,
this should be higher than the most significant source
in your map. Therefore, it is only really useful in
deep model, where 5-signa despiking is default. See
‘deep.cfg’.

source.despike.level
[source]
[[despike]]
level=<X>

Set the source despiking level to an S/N of X. You prob-
ably want to set X to be no more than about 10 times the
most significant source in your map. See source.despike.

source.filter
[source]
[[filter]]
<options. . .>

Filter extended structures. By default, the filter will skip
over map pixels that are above the source.filter.blank S/N
level (>6 by default). Thus, any structure above this sig-
nificance level will remain unfiltered. Filtering is useful
to get deeper in the map when retaining the very faint ex-
tended structures is not an issue. Filtering above 5 times
the source size (see sourcesize_`) is default when the fil-
ter is used.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
77

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

source.filter.blank
[source]
[[filter]]
blank=<X>

Set the blanking level of the large-scale structure (LSS)
filter. Any map pixels with an S/N above the specified
level will be skipped over, and therefore remain unaf-
fected by the filter. See source.filter.fwhm.

source.filter.fwhm
[source]
[[filter]]
fwhm=<X>

Specify the Gaussian FWHM of the large-scale struc-
ture (LSS) filter. Values greater than about 5-times the
beam size are recommended in order to avoid the un-
necessary filtering of compact or point sources. See
source.filter.blank.

source.filter.type
[source]
[[filter]]
type={convolution, fft}

Specify the type of the large-scale structure filter. Con-
volution is more accurate but may be slower than FFT,
especially for very large maps.

source.fixedgains
[source]
fixedgains={True, False}

Specify the use of fixed source gains (e.g. from an
RCP file). Normally, SOFSCAN calculates source gains
based on the correlated noise response and the specified
point source couplings (e.g. as derived from the two
gain columns of RCP files). This option can be used to
treat the supplied source gains as static (i.e. decoupled
from the sky-noise gains). See source.coupling and pix-
elmap.

source.flatfield
Sets: config=flatfield.cfg

[source]
flatfield={True, False}

Use for deriving flatfields based on response to a source.
For it to work effectively, you need a scan that moves
bright source emission over all fields. It is a soft option,
defined in ‘default.cfg’, and it results in loading ‘flat-
field.cfg’ for configuring optimal settings for source gain
derivation.

source.intermediates
[source]
intermediates={True,
False}

Write the maps made during the reduction into ‘interme-
diate.fits’ (inside the SOFSCAN output directory). This
allows the user to keep an eye on the evolution of maps
iteration-by-iteration. Each iteration will overwrite this
temporary file, and it will be erased at the end of the re-
duction.

source.mem
[source]
mem={True, False}

Use the maximum-entropy method (MEM) correction
to the source map. The MEM requirement suppresses
some of the noise on the small spatial scales, and pushes
solutions closer to the zero level for low S/N structures.
This increases contrast between significant source struc-
tures and background. It is similar to the MEM used in
radio interferometry, although there are key differences.
For one, interferometry measures components in the uv-
plane, and MEM corrections are applied in xy coordi-
nate space. For SOFSCAN, both the solutions and cor-
rections are applied in the same configuration space. See
source.mem.lambda.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
78

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

source.mem.lambda
[source]
[[mem]]
lambda=<X>

Specify the desirability of MEM solutions relative to the
maximum-likelihood solution. Typical values of lambda
are in the range 0.1 to 1, but higher or lower values may
be set to give extra weight towards one type of solution.

source.model
(Not implemented yet)

[source]
model=<filename>

Specify an initial source model to use in the reduction.
This may be useful when reducing large datasets where
all data cannot be reduced together. Instead, the data
can be split into manageable sized chunks which are re-
duced separately. The results can be coadded to cre-
ate a composite map. This may be further manipulated
(e.g. S/N clipping, smoothing, filtering, etc.) before
feeding back into another round of reduction. Clip-
ping and blanking settings are usually altered when an
a-priori source-model is thus defined. See blank, clip,
and smooth.external.

source.nosync
[source]
nosync={True, False}

Do not bother syncing the source solution back into the
raw timestream. This saves a bit of time in the last round
of most reductions when the source is the last step in the
pipeline, and the residuals are not used otherwise (e.g.
by write.covar, write.ascii or write.spectrum).

source.redundancy
[source]
redundancy=<N>

Specify the minimum redundancy (N samples) that each
scan-map pixel output ought to have in order to be con-
sidered valid. Pixels with redundancies smaller than this
critical value will be flagged and not used in the compos-
ite source making.

source.sign
[source]
sign=<spec>

Most astronomical source have a definite signedness.
For continuum, we expect to see emission, except when
looking at SZ clusters at 2-mm, which have a unique neg-
ative signature. SOFSCAN can do a better job if the
signature of the source is predetermined. The sign spec-
ification <spec> can be:

• positive: +, positive, plus, pos, >0
• negative: -, negative, minus, neg, <0
• any: *, any, 0

When not set, the default is to assume that sources be
may of either sign (same as *, any, or 0). The signature
determines how source clipping and blanking are imple-
mented. See clip and blank.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
79

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

source.type
[source]
type=<type>

By default, SOFSCAN will try to make a map from the
data. However, some instruments may take data that is
analyzed differently. For example, you may want to use
SOFSCAN to reduce pixels maps (to determine the posi-
tion of pixels on the sky), or skydips (to derive appropri-
ate opacities), or do point source photometry. Presently,
the following source types (<type>) are supported for all
instruments:

• map: Make a map of the source (default)
• skydip: Reduce skydips and determine opacities

by fitting a model.
• pixelmap: Create individual maps for every pixel,

and use it to determine their location in the field
of view.

• None: Do not generate a source model. Useful for
lab/diagnostic reductions.

Note: you may also just use skydip and pixelmap short-
hands to the same effect.

sourcesize sourcesize=<X> This option can be used instead of extended in conjunc-
tion with faint or deep to specify the typical size of
sources (FWHM in arcseconds) that are expected. The
reduction then allows filtering structures that are much
larger than the specified source size. If sourcesize or ex-
tended are not specified, then point-like compact sources
are assumed. The source size helps tune the 1/f filter (see
drifts) optimally. The 1/f timescale is set to be the larger
of the stability or 5 times the typical source crossing time
(calculated via sourcesize). Note that noise whitening
will mute the effect of this settings almost completely.
See faint, extended, and whiten.

split
Sets:
smooth.external=True
[last]
forget=exposureclip

split={True, False} A convenience key for adjusting options for very large
data sets which have to be split into manageable sized
chunks in the reduction. See smooth.external and
source.model.

stability stability=<X> Specify the instrument’s 1/f stability time scale in sec-
onds. This value is used for optimmizing reduction pa-
rameters when these options are not explicitly specified
(e.g. the filtering timescale for the drifts option). See
drifts and sourcesize.

subarray
Instrument: HAWC+

subar-
ray=<sub1>,<sub2>,. . .

Restrict the analysis to just the selected subarrays. For
HAWC+, the <sub?> may contain the subarray IDs: R0,
R1, T0, and T1, or R to specify R0 and R1, or T to spec-
ify T0 and T1.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
80

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

subscan.merge
[subscan]
[[merge]]
value={True, False}

Specifies that the integrations (subscans) in a scan
should be merged into a single timestream, will invalid
frames filling potential gaps at the boundaries to ensure
proper time-spacing of all data (for time window pro-
cessing of FFTs). See subscan.split.

subscan.merge.maxgap
[subscan]
[merge]
maxgap=<X>

Merging integrations (subscans) will pad gaps between
them with invalid frames as needed. Use this option to
limit how much padding X (seconds) is allowed. If the
gap between two consecutive subscans is larger than the
maximum gap specified by this option, then the merge
will continue in a separate scan.

subscan.minlength
[subscan]
minlength=<X>

Set the minimum length of integrations (subscans) to X
seconds. Integrations shorter than the specified value
will be skipped during the scan reading phase. Most re-
ductions rely on the background variations to create sig-
nals from which detector gains can be estimated with the
required accuracy. Very short integrations may not have
sufficient background signals for the robust estimation
of gains, and it is thus best to simply ignore such data.

subscan.split
[subscan]
split={True, False}

Allow subscans (integrations) to be split into separate
scans. This is practical to speed up the reduction of sin-
gle scans with may subscans on machines with multi-
core CPUs, since the reduction does not generally pro-
cess integrations in parallel, but nearly always does for
scans. See subscan.merge.

supergalactic
Sets:
system=supergalactic

supergalactic={True,
False}

Make maps in supergalactic coordinates. See system.

system system=<type> Select the coordinate system for mapping. Available
<type> values are:

• equatorial (default)
• horizontal
• ecliptic
• galactic
• supergalactic
• focalplane
• native

Most of these values are aliased to simply keys. See al-
taz, equatorial, ecliptic, galactic, supergalactic, radec,
horizontal, and focalplane.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
81

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

tau
[tau]
value={<X>, <spec>}

Specify an in-band zenith opacity value to use (<X>).
For some instruments, the <spec> may be used to specify
a filename with lookup information, or tau in another
band (see tau.<?>) with an appropriate scaling relation
to in-band values (see tau.<?>.a and tau.<?>.b).
When lookup tables are used, the tau values will be in-
terpolated for each scan, so long as the scan falls inside
the interpolator’s range. Otherwise, a tau of 0.0 will be
used.

tau.pwvmodel
Telescope: SOFIA

[tau]
pwvmodel={True, False}

Estimate a typical PWV value (for opacity correction)
based on altitude alone. See pwv41k and pwvscale.

tau.<?>
[tau]
[[<?>]]
value=<X>

Specify the tau value for X for <?> where <?> can stand
for any user-specified relation. Some useful conversion
relations are predefined for certain instruments. E.g.
some typical values may be ‘pwv’ (millimeters of pre-
cipitable water vapor). The values will be scaled to in-
band zenith opacities using the linear scaling relations
defined via the tau.<?>.a and tau.<?>.b constants.

tau.<?>.a
[tau]
[[<?>]]
a=<X>

Define the scaling term for the opacity measure <?>.
Zenith opacities are expressed in a linear relationship to
some user-defined tau parameter t as:

tau(<?>) = (a * t) + b
This key sets the linear scaling constant ‘a’ in the above
equation, while tau.<?>.b specifies the offset value.

tau.<?>.b
[tau]
[[<?>]]
b=<X>

Set the offset value in a linear tau scaling relationship.
See tau.<?>.a for details.

uniform uniform={True, False} Instruct the use of uniform pixel gains initially instead of
the values read from the appropriate pixel data file. See
pixeldata.

unit unit=<name> Set the output units to <name>. You can use either the
instrumental units (e.g. ‘V/beam’ or ‘count/beam’) or
the more typical ‘Jy/beam’ (default). All names must
be parseable by the astropy.units.Unit Python class. See
dataunit and jansky.

unlock un-
lock=<key1>,<key2>,. . .

Release the lock on a configuration option, allowing it to
be changed. See lock for further details.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
82

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

vclip
[vclip]
value={auto,
<min>:<max>}

Clip data where the field scan velocity is outside the
specified range (<min>:<max> in arcseconds/second).
The successful disentangling of the source structures
from the various noise terms release on these being sep-
arated in the frequency space. With typical 1/f type lim-
iting noise, this is harder when the scan speed is low
such that the source signals occupy the low frequen-
cies. Therefore, requiring a minimum scanning speed
is a good idea. Likewise, too high scanning speeds will
smear out sources if the movement between samples is
larger than ~1/3 beam. A value of ‘auto’ can be speci-
fied to set the velocity clipping range optimally based on
the typical scanning speeds. See vclip.strict, aclip, and
resolution.

vclip.strict
[vclip]
strict={True, False}

When set, discard any frames outside of the acceptable
range of mapping speeds (as defined by the vclip option),
rather than the default approach of simply flagging slow
motion for source modelling only.

weighting
[weighting]
value={True, False}

Derive pixel weights based on the RMS of the unmod-
elled timestream signals.

weighting.frames
[weighting]
[[frames]]
<options. . .>

If configured, calculate time weights in addition to pixel
weighting to allow for non-stationary noise. See weight-
ing.frames.resolution.

weight-
ing.frames.noiserange [weighting]

[[frames]]

noiserange=<min>:<max>

Set the acceptable range of temporal noise variation.
Standard range syntax may be used such as wildcards
(*) to indicate an open range or a hyphen (-) instead of a
colon (:). See weighting.noiserange.

weight-
ing.frames.resolution [weighting]

[[frames]]
resolution={<X>, auto}

By default, all exposures are weighted independently.
With this option set, weights are derived for blocks of
exposures spanning X seconds. The value ‘auto’ can
also be used to match the time-constant to that of drifts.
Time weighting is often desired but can cause instabili-
ties during the reduction, especially if the time-scale is
mismatched to other reduction steps. Adjust the time
scale only if you really understand what you are doing.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
83

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

weighting.method
[weighting]
method=<name>

Set the method used for deriving pixel weights from the
residuals. The following methods (<name>) are avail-
able:

• rms: Standard RMS calculation.
• robust: Use robust estimates for the standard de-

viation.
• differential: Estimate noise based on pairs of data

separated by some interval.

weighting.noiserange
[weighting]

noiserange=<min>:<max>

Specify what range of pixel noises are admissible rela-
tive to the median pixel noise. Pixels that fall outside
of the <min> or <max> will be flagged. Standard range
syntax may be used such as wildcards (*) to indicate an
open range or a hyphen (-) instead of a colon (:). See
weighting.frames.noiserange.

weighting.scans
[weighting]
[[scans]]
value={True, False}

If set, each scan gets an assigned weight with which it
contributes to the composite map. This weight is mea-
sured directly from the noise properties of the produced
map.

weighting.scans.method
[weighting]
[[scans]]
method={robust,
maximum-likelihood}

The method by which to calculate the scan weight-
ing. ‘robust’ method weights by median(V) / 0.454937,
whereas any other method weights by mean(V) where V
is the significance map variance.

whitelist whitelist=<key1>,
<key2>,. . .

Remove any key from the blacklist, allowing it to be set
again if desired. Whitelisting an option may not set it
to its prior value, so you should explicitly set it again or
recall it to it’s prior state.

whiten
Alias: filter.whiten

[whiten]
<options. . .>

An alias for filter.whiten.

whiten.level
Alias: filter.whiten.level

whiten.level=<X> An alias for filter.whiten.level.

whiten.minchannels
Alias:
filter.whiten.minchannels

whiten.minchannels=<N> An alias for filter.whiten.minchannels.

whiten.proberange
Alias:
filter.whiten.proberange

whiten.proberange=<spec> An alias for filter.whiten.proberange.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
84

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

wiring wiring=<filename> This option is commonly used to specify a file contain-
ing the wiring information of the detectors, which can
be used to establish the typical groupings of the instru-
ments. There is no standard format for the wiring file
(if may vary by instrument), and not all instruments may
use such information. See pixeldata and rcp.

write.ascii
[write]
ascii={True, False}

Write the residual timestreams to an ASCII table. The
file will contain as many columns as there are pixels in
the reduction (see noslim), each corresponding to a pixel
timestream. The first row contains the sampling rate
(Hz). Flagged data is indicated with a NaN character.
See noslim and write.spectrum.

write.coupling
[write]
[[coupling]]
value=<sig1>, <sig2>,. . .

Measure and write coupling gains to the given signals
(<sig>). Coupling gains are similar to correlation co-
efficients but normalized differently so that they can be
used directly to remove the correlated signal from the
timestream. For example:

write.coupling=telescope-x,accel-mag
will write out the coupling gains of each detector to
the telescope azimuth motion (‘telescope-x’) and scalar
acceleration (‘accel-mag’). See correlated.<modality>
and write.coupling.spec.

write.coupling.spec
(Not currently
implemented)

[write]
[[coupling]]
[[[spec]]]
value=<mod1>,
<mod2>,. . .

Measure and write coupling spectra. Coupling spectra
are similar to correlation spectra, but with a gain-type
normalization so that the values can be interpreted di-
rectly as gains by which the correlated signal can be
removed from the timestream data. The <mod> argu-
ments are a list of modality names such as ‘telescope-
x’ or ‘accel-mag’. See correlated.<modality> and
write.coupling.

write.coupling.spec.
windowsize
(Not currently
implemented)

[write]
[[coupling]]
[[[spec]]]
windowsize=<N>

Specify the window size (as N downsampled samples)
on which to measure the coupling spectra. The default
is to measure on the longest meaningful timescale as de-
fined by drifts. See write.coupling.spec.

write.covar
[write]
[[covar]]
<value>=<spec1>,
<spec2>,. . .

Write covariance data. If no value is specified, the full
pixel-to-pixel covariance data will be writen to a FITS
image. The optional <value> can specify the ordering of
the covariance matrix according to pixel divisions. Each
group in the pixel division will be blocked together for
easy identification of block-diagonal covariance struc-
tures. Other than the division names, the list can contain
‘full’ and ‘reduced’ to indicate the full covariance ma-
trix of all instrument pixels, or only those that were used
in the reduction. See division.<name> and noslim.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
85

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

write.covar.condensed
[write]
[[covar]]
condensed={True, False}

When writing covariance matrices, write only ‘live’
channels. I.e. those that are unflagged by the reduction.
This results in a covariance matrix without gaps. The
downside is that identifying particular pixels/channels
may be difficult in that form. See write.covar.

write.flatfield
[write]
[[flatfield]]
value={True, False}

Write a DRP flatfield FITS file to be used by the chop-
nod pipeline. The file format is specified by Marc
Berthoud.

write.flatfield.name
[write]
[[flatfield]]
name=<filename>

An optional setting to specify the FITS file name for
write.flatfield. If not present, a default name containing
the scan ID is written to outpath.

write.pixeldata
[write]
pixeldata={True, False}

Write the pixel data file (gains, weights, flags). The
output will be pixel-<scanno>.dat’ in outpath. You
can use these files to update instrumental defaults in
the instrument subdirectory. E.g., to replace ‘pixel-
A.170mK.F445.dat’ in data/configurations/hawc_plus/.
See rcp and wiring.

write.png
[write]
[[png]]
value={True, False}

Write a PNG thumbnail with the final result. The PNG
image has the same name as the output file with a
‘.png’ appended. See write.png.color, write.png.crop,
write.png.plane, write.png.size, and write.png.smooth.

write.png.color
[write]
[[png]]
color=<name>

Set the color scheme for rendering the PNG image. The
available color scheme names are any that may be passed
into the ‘cmap’ parameter of the Python function mat-
plotlib.pyplot.imshow. If not supplied, the default will
be ‘viridis’.

write.png.crop
[write]
[[png]]
crop={auto or
<xmin>,<ymin>,
<xmax>,<ymax>}

Set rectangular bounds to the PNG output image in the
instrument’s native size unit (usually arcseconds). The
argument is usually a list of comma-separated corners
relative the the source position. If a single value is given
then the PNG output will be a square area with +/- that
size in X and Y. If 2 or 3 values are supplied, the missing
offsets will be assumed to be the negative equivalent to
the coordinates given. Thus:

• 90 = -90, -90, 90, 90
• 60, 90 = -60, -90, 60, 90
• -45, -50, 60 = -45, -50, 60, 50

If ‘auto’ is used, the map will automatically be cropped
to the best dimensions for all valid pixels in the map. See
write.png.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
86

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

write.png.plane
[write]
[[png]]
plane={flux, noise,
weight, time, s2n}

Selects the FITS image plane to write into the PNG. Un-
recognized planes will be interpreted as ‘flux’ (default).
See write.png.

write.png.size
[write]
[[png]]
size={<x>X<y> or
<x>,<y> or <X>}

Set the size of the PNG thumbnails. You can specify
both a single integer for square images or two integers
separated by ‘x’, ‘,’ or ‘X’. E.g., 640x480. The default
size is 300x300. See write.png.

write.png.smooth
[write]
[[png]]
smooth=<spec>

Specify how much to smooth the PNG output. The op-
tions works in the same manner to the regular smooth
option for FITS images, but is not completely indepen-
dent from it. PNG images are always smoothed as much
as required by smooth, and this option is only effective
if the PNG smoothing is larger.

write.signals
[write]
signals={True, False}

Write out all the correlated signals that were calculated
in the reduction as ASCII timestreams. Each signal
mode is written in its own file, named after the mode’s
name and carrying a ‘.tms’ extension. The files are sim-
ple ASCII timestreams with the sampling frequency ap-
pearing in the first row.

write.scandata
[write]
[[scandata]]
value={True, False}

Whether or not to add HDUs at the end of the output
FITS image describing each scan (default). Each scan
will contribute an extra HDU at the end of the image.
Disabling this option (e.g. via forget) can decrease the
size of the output images, especially for large data sets
containing many scans.

write.scandata.details
[write]
[[scandata]]
details={True, False}

when enabled, write.scandata will add extra detail into
the FITS outputs such as channel gains, weights, flags,
spectral filtering, profiles, and residual noise power
spectra. See write.scandata.

write.spectrum
[write]
[[spectrum]]
value=<window>

Writes channel spectra (of residuals) into an ASCII ta-
ble. The optional argument <window> can specify a
window function to use. This is passed into the Python
function scipy.signal.welch in the ‘window’ parameter.
Please see scipy.signal.get_window for a list of available
window types. The default is ‘hamming’.
The first column in the output file indicated the fre-
quency, after which come the power-spectral-densities
(PSF) of each channel used in the reduction. See noslim
and write.ascii.

continues on next page

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
87

SOF-US-HBK-OP10-2008
Rev. J

Table 8 – continued from previous page
Keyword Usage in configuration

file
Description

write.spectrum.size
[write]
[[spectrum]]
size=<N>

Specify the window size (in powers of 2) to use for mea-
suring spectra. By default, the spectral range is set by
the 1/f filtering timescale (drifts).

Part IX

Appendix: Sample Configuration Files

16 Full DRP Configuration File

Below is a copy of the full configuration file used by the pipeline in the DPS environment (pipeconf.cfg). It is in INI
format, and is readable by the configobj Python module.

HAWC Pipeline Base Configuration File
#
This file contains all settings for reducing HAWC science and
in-flight diagnostic data. It is intended to be used with
additional delta configuration files.
#
DO NOT edit this file without consulting with the HAWC data
reduction team.

Basic Settings
#=======================

Data Section: information on data objects and file names
[data]

Regexp for part of the filename before the file step identifier
filenamebegin = '\A((\d.+)|(F[\dX]{3,4}_HA_[A-Za-z]+_[A-Za-z0-9]+_[A-Za-z0-9]+))_'
filenameend = '_((\d+-)?\d+)(?:_BIN\d+)?\.fits(\.gz)?\Z' # HAWC+
filenum = '(?:\A.*(?:(?:F\d{3,4})|(?:XXXX))_((?:\d+-)?\d+)_.*\.fits(?:\.gz)?\Z)|(?:\

→˓AF[\dX]{3,4}_HA.*_((?:\d+-)?\d+)(?:_BIN\d+)?\.fits(?:\.gz)?\Z)'
dataobjects = DataFits, DataText #, DataCsv

PIPE MODES
#===================
configuration for individual pipeline modes. Each needs:
- datakeys: List of keyword=values required in file header to select this pipeline mode
Format is: Keyword=Value|Keyword=Value|Keyword=Value
- stepslist: List of pipesteps to run the data through

Lab polarimetry data -- match this first, since it depends
on a specific CMTFILE only

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
88

SOF-US-HBK-OP10-2008
Rev. J

[mode_labpol]
datakeys = 'CMTFILE=Hawc_Take data at HWP positions.txt'
list of steps
stepslist = StepCheckhead, StepPrepare, StepDemodulate, StepDmdPlot, StepDmdCut,

→˓ StepFlat, StepShift, StepSplit, StepCombine, StepNodPolSub, StepStokes, StepWcs,␣
→˓StepPolVec, StepRegion, StepLabPolPlots

change stepprepare to labmode
[[checkhead]]

abort = False
[[prepare]]

labmode = True
colrename = 'crioTTLChopOut->Chop Offset|AZ_Error->Azimuth Error|EL_Error->

→˓Elevation Error|AZ->Azimuth|EL->Elevation|SIBS_VPA->Array VPA'
chpoffsofiaRS = False

[[demodulate]]
track_tol = -1

[[dmdcut]]
mask_bits = 64

[[flat]]
labmode = True

[[wcs]]
labmode = True
save = True

[[region]]
save = True

[[header]]
NODPATT = "'A' / Nod Pattern"
CHPFREQ = 2.988 / Chop Frequency

lab noise data
[mode_noisedata]

datakeys = 'CALMODE=NOISE'
list of steps
stepslist = StepCheckhead, StepPrepare, StepNoiseFFT, StepNoisePlots
change stepprepare to labmode
[[checkhead]]

abort = False
[[prepare]]

labmode = True
colrename = 'crioTTLChopOut->Chop Offset|AZ_Error->Azimuth Error|EL_Error->

→˓Elevation Error|AZ->Azimuth|EL->Elevation|SIBS_VPA->Array VPA'
chpoffsofiaRS = False

[[header]]
NODPATT = "'A' / Nod Pattern"
CHPFREQ = 2.988 / Chop Frequency
NHWP = "1 / Number of HWP angles"

Other lab data
[mode_labdata]

datakeys = 'INSTMODE=C2N (NMC)|CHPSRC=internal|CALMODE=UNKNOWN'
list of steps
stepslist = StepCheckhead, StepPrepare, StepDemodulate, StepDmdPlot, StepDmdCut,␣

→˓StepLabChop, StepFlat, StepShift, StepSplit, StepCombine, StepNodPolSub, StepStokes,␣
→˓StepWcs, StepMerge

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
89

SOF-US-HBK-OP10-2008
Rev. J

change stepprepare to labmode
[[checkhead]]

abort = False
[[prepare]]

labmode = True
colrename = 'crioTTLChopOut->Chop Offset|AZ_Error->Azimuth Error|EL_Error->

→˓Elevation Error|AZ->Azimuth|EL->Elevation|SIBS_VPA->Array VPA'
chpoffsofiaRS = False

[[demodulate]]
track_tol = -1

[[dmdcut]]
mask_bits = 64

[[flat]]
labmode = True

[[labchop]]
save = True

[[wcs]]
labmode = True
save = True

[[header]]
NODPATT = "'A' / Nod Pattern"
CHPFREQ = 2.988 / Chop Frequency
NHWP = "1 / Number of HWP angles"

PolMap step, for generating png file only
[mode_polmap]

datakeys = 'PRODTYPE = polmap'
stepslist = StepPolMap,
[[polmap]]

save = False

Mode for Internal Calibrator File to generate flats
[mode_intcal]

datakeys ='CALMODE=INT_CAL'
list of steps
stepslist = StepCheckhead, StepFluxjump, StepPrepare, StepDemodulate, StepDmdPlot,␣

→˓StepDmdCut, StepMkflat
Always attempt to continue reduction
[[checkhead]]

abort = False
Stepprepare change to labmode and get Chop Offset from crioAnalogChopOut
[[prepare]]

labmode=True
colrename = 'crioAnalogChopOut -> Chop Offset|AZ_Error->Azimuth Error|EL_Error->

→˓Elevation Error|AZ->Azimuth|EL->Elevation|SIBS_VPA->Array VPA'
chpoffsofiars = False

Change demodulation options
[[demodulate]]

l0method = 'RE'
phasefile = 0.0
checkhwp = False
track_tol = -1

[[dmdcut]]
mask_bits = 64

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
90

SOF-US-HBK-OP10-2008
Rev. J

Change header value NODPATT = A
[[header]]

NODPATT = "'A' / Nod Pattern"

SKYDIP data
[mode_skydip]

datakeys = 'INSTCFG=TOTAL_INTENSITY|CALMODE=SKY_DIP'
list of steps
stepslist = StepCheckhead, StepScanMap, StepFluxjump, StepPrepare, StepDemodulate,␣

→˓StepDmdPlot, StepDmdCut, StepSkydip
Always attempt to continue reduction
[[checkhead]]

abort = False
ScanMap - no output
[[scanmap]]

noout = True
save = False

Stepprepare change to labmode and get Chop Offset from crioAnalogChopOut
[[prepare]]

labmode=True
colrename = 'crioAnalogChopOut -> Chop Offset|AZ_Error->Azimuth Error|EL_Error->

→˓Elevation Error|AZ->Azimuth|EL->Elevation|SIBS_VPA->Array VPA'
chpoffsofiaRS = False

Change demodulation options
[[demodulate]]

l0method = 'ABS'
track_tol = -1
track_extra = 0,0

[[dmdcut]]
mask_bits = 64

[[header]]
NODPATT = "'A' / Nod Pattern"

POLDIP data
[mode_poldip]

datakeys = 'INSTCFG=POLARIZATION|CALMODE=SKY_DIP'
stepslist = StepCheckhead, StepFluxjump, StepPrepare, StepPolDip
Always attempt to continue reduction
[[checkhead]]

abort = False
[[prepare]]

traceshift = 4

AUTOFOCUS: Mode for Automatic Focusing for Scan data
[mode_autofocus]

datakeys = 'INSTMODE=OTFMAP|INSTCFG=TOTAL_INTENSITY|CALMODE=FOCUS'
list of steps
stepslist = StepCheckhead, StepScanMapFocus, StepStdPhotCal, StepFocus, StepImgMap
[[scanmap]]

use_frames = ''

ChopNod Mode Configuration
[mode_nod_std_dmd]

datakeys = 'INSTMODE=C2N (NMC)|INSTCFG=TOTAL_INTENSITY|OBSTYPE=STANDARD_

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
91

SOF-US-HBK-OP10-2008
Rev. J

→˓FLUX|PRODTYPE=demodulate'
stepslist = StepDmdPlot, StepDmdCut, StepFlat, StepShift, StepSplit, StepCombine,

→˓ StepNodPolSub, StepStokes, StepWcs, StepOpacity, StepBgSubtract, StepMerge,␣
→˓StepStdPhotCal, StepImgMap
[mode_nod_std]

datakeys = 'INSTMODE = C2N (NMC)|INSTCFG = TOTAL_INTENSITY|OBSTYPE=STANDARD_FLUX'
list of steps
stepslist = StepCheckhead, StepFluxjump, StepPrepare, StepDemodulate, StepDmdPlot,

→˓ StepDmdCut, StepFlat, StepShift, StepSplit, StepCombine, StepNodPolSub, StepStokes,␣
→˓StepWcs, StepOpacity, StepBgSubtract, StepMerge, StepStdPhotCal, StepImgMap

[[demodulate]]
checkhwp = False

[mode_nod_dmd]
datakeys = 'INSTMODE = C2N (NMC)|INSTCFG = TOTAL_INTENSITY|PRODTYPE = demodulate'
stepslist = StepDmdPlot, StepDmdCut, StepFlat, StepShift, StepSplit, StepCombine,

→˓ StepNodPolSub, StepStokes, StepWcs, StepOpacity, StepBgSubtract, StepMerge,␣
→˓StepCalibrate, StepImgMap
[mode_nod]

datakeys = 'INSTMODE = C2N (NMC)|INSTCFG = TOTAL_INTENSITY'
list of steps
stepslist = StepCheckhead, StepFluxjump, StepPrepare, StepDemodulate, StepDmdPlot,

→˓ StepDmdCut, StepFlat, StepShift, StepSplit, StepCombine, StepNodPolSub, StepStokes,␣
→˓StepWcs, StepOpacity, StepBgSubtract, StepMerge, StepCalibrate, StepImgMap

[[demodulate]]
checkhwp = False

Nod-Pol Mode Configuration
[mode_nodpol_dmd_std]

datakeys = 'INSTMODE=C2N (NMC)|INSTCFG=POLARIZATION|OBSTYPE=STANDARD_
→˓FLUX|PRODTYPE=demodulate'

stepslist = StepDmdPlot, StepDmdCut, StepFlat, StepShift, StepSplit, StepCombine,␣
→˓StepNodPolSub, StepStokes, StepWcs, StepIP, StepRotate, StepOpacity, StepBgSubtract,␣
→˓StepMerge, StepStdPhotCal, StepPolVec, StepRegion, StepPolMap
[mode_nodpol_std]

datakeys = 'INSTMODE=C2N (NMC)|INSTCFG=POLARIZATION|OBSTYPE=STANDARD_FLUX'
list of steps
stepslist = StepCheckhead, StepFluxjump, StepPrepare, StepDemodulate, StepDmdPlot,

→˓ StepDmdCut, StepFlat, StepShift, StepSplit, StepCombine, StepNodPolSub, StepStokes,␣
→˓StepWcs, StepIP, StepRotate, StepOpacity, StepBgSubtract, StepMerge, StepStdPhotCal,␣
→˓StepPolVec, StepRegion, StepPolMap
[mode_nodpol_dmd]

datakeys = 'INSTMODE = C2N (NMC)|INSTCFG = POLARIZATION|PRODTYPE = demodulate'
stepslist = StepDmdPlot, StepDmdCut, StepFlat, StepShift, StepSplit, StepCombine,␣

→˓StepNodPolSub, StepStokes, StepWcs, StepIP, StepRotate, StepOpacity, StepCalibrate,␣
→˓StepBgSubtract, StepMerge, StepPolVec, StepRegion, StepPolMap
[mode_nodpol]

datakeys = 'INSTMODE = C2N (NMC)|INSTCFG = POLARIZATION'
list of steps
stepslist = StepCheckhead, StepFluxjump, StepPrepare, StepDemodulate, StepDmdPlot,

→˓ StepDmdCut, StepFlat, StepShift, StepSplit, StepCombine, StepNodPolSub, StepStokes,
→˓ StepWcs, StepIP, StepRotate, StepOpacity, StepCalibrate, StepBgSubtract, StepMerge,␣
→˓StepPolVec, StepRegion, StepPolMap

Flux standards configuration

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
92

SOF-US-HBK-OP10-2008
Rev. J

[mode_scan_std]
datakeys = 'INSTMODE=OTFMAP|INSTCFG=TOTAL_INTENSITY|OBSTYPE=STANDARD_FLUX'
stepslist = StepCheckhead, StepScanMap, StepStdPhotCal, StepImgMap

[mode_scanpol_std]
datakeys = 'INSTMODE=OTFMAP|INSTCFG=POLARIZATION|OBSTYPE=STANDARD_FLUX'
stepslist = StepCheckhead, StepScanMapPol, StepScanStokes, StepIP, StepRotate,␣

→˓StepStdPhotCal, StepMerge, StepPolVec, StepRegion, StepPolMap, StepImgMap
[[ip]]

fileip = uniform
beam size pixels for scanpol
#[[merge]]
cdelt = 4.84, 7.80, 7.80, 13.6, 18.2 # Pixel size in arcseconds of output map.␣

→˓cdelt = beamsize
fwhm = 4.84, 7.80, 7.80, 13.6, 18.2 # smoothing FWHM: beam size
radius = 14.52, 23.4, 23.4, 40.8, 54.6 # fit window: beam size * 3

Imaging Scan Mode Configuration
[mode_scan]

datakeys = 'INSTMODE=OTFMAP|INSTCFG=TOTAL_INTENSITY'
stepslist = StepCheckhead, StepScanMap, StepZeroLevel, StepCalibrate, StepImgMap

Scanning Polarimetry Mode Configuration
[mode_scanpol]

datakeys = 'INSTMODE=OTFMAP|INSTCFG=POLARIZATION'
stepslist = StepCheckhead, StepScanMapPol, StepScanStokes, StepIP, StepRotate,␣

→˓StepCalibrate, StepMerge, StepPolVec, StepRegion, StepPolMap
[[ip]]

fileip = uniform
beam size pixels for scanpol
#[[merge]]
cdelt = 4.84, 7.80, 7.80, 13.6, 18.2 # Pixel size in arcseconds of output map.␣

→˓cdelt = beamsize
fwhm = 4.84, 7.80, 7.80, 13.6, 18.2 # smoothing FWHM: beam size
radius = 14.52, 23.4, 23.4, 40.8, 54.6 # fit window: beam size * 3

Skyflat mode configuration: this mode does not uniquely match any
input data. It needs to be selected manually.
[mode_skycal]

datakeys = 'INSTMODE=OTFMAP|INSTCFG=TOTAL_INTENSITY'
list of steps
stepslist = StepCheckhead, StepScanMapFlat, StepSkycal

PIPE STEPS
#====================
All HAWC steps in alphabetical order.

BINPIXELS
[binpixels]

block_size = 1 # binning size: 2, 4, or 8. Set <= 1 to turn off.

BGSUBTRACT - background subtraction step
[bgsubtract]

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
93

SOF-US-HBK-OP10-2008
Rev. J

cdelt = 2.57, 4.02, 4.02, 6.93, 9.43 # output pixel size: detector pixscale
proj = TAN # Projection of output map
sizelimit = 3000 # Upper limit on map size (either axis, in pixels)
fwhm = 4.84, 7.80, 7.80, 13.6, 18.2 # smoothing FWHM: beam size
radius = 9.68, 15.6, 15.6, 27.2, 36.4 # fit window: beam size * 2
errflag = True # Use uncertainties when computing averages?
widowstokesi = True # Use widow pixels (flagged 1 or 2) when smoothing
edge_threshold = 0.5 # Set edge pixels to NaN
fit_order = 0 # Fit order for local regression
bgoffset = 10 # Number of iterations of background subtract with offset (intercept)␣

→˓term
chauvenet = True # Use Chauvenet's criterion in background subtraction?
fitflag = False # Use errors in intensity when fitting?
qubgsubtract = True # Apply background offsets to individual Stokes QU files?

CALIBRATE - fluxes from data units to Jy/pixel
[calibrate]

COMBINE - R-T and R+T data
[combine]

sigma = 3.0 # Reject outliers more than this many sigma from the mean
sum_sigma = 4.0 # Reject additional R+T outliers more than sum_sigma from the mean
use_error = False # Set to True to use Chauvenet output errors rather than␣

→˓propagating input variances

Check the primary FITS header for required keywords
[checkhead]

abort = True
headerdef = $DPS_HAWCPIPE/data/config/header_req_config.cfg

DEMODULATE - Demodulate the chopped data while keeping all samples
[demodulate]

chop_tol = 0.2 # chopper tolerance in arcseconds
nod_tol = 5.0 # nod tolerance in arcseconds
hwp_tol = 2. # hwp angle tolerance in degrees
az_tol = 5000000.0 # Azimuth error tolerance in arcseconds
el_tol = 5000000.0 # Elevation error tolerance in arcseconds
track_tol = 'centroidexp' # Track error tolerance in arcseconds (AOIs 3 and 4) -␣

→˓set negative to deactivate
track_extra = 0, 0 # Extra samples removed (in seconds) before and after samples␣

→˓flagged by track_tol
chopphase = True # Flag requiring chop phase correction
checkhwp = True # Set FALSE to avoid check expected number of HWP angles
phasefile = $DPS_HAWCPIPE/data/phasefiles/masterphase_170307.fits
phaseoffset = 0.0 # Offset to apply to phasefile, in degrees
l0method = 'RE' # Method to normalize data: REal, IMag and ABSolute
boxfilter = -1 # Box Highpass Filter. -1 = frequency from the header
chopavg = True # Flag to save chop averaged raw data (default = False)
tracksampcut = 0.5 # If fraction of all samples removed due to tracking is larger␣

→˓than this number, than tracking status is BAD
data_sigma = 5.0 # value for sigma-clipping of detector data in variance calculation

DMDCUT - Discard chops based from the Demodulate output
[dmdcut]

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
94

SOF-US-HBK-OP10-2008
Rev. J

mask_bits = 1023 # bits of 'Chop Mask' on which to discard chops
min_samples = 1 # minimum number of samples for retaining a chop

DMDPLOT - Plot output of Demodulate
[dmdplot]

door_threshold = 2.0 # ratio of imaginary to real median stds for door␣
→˓vignetting

detector_i = 14 # i-location of detector pixel to plot
detector_j = 24 # j-location of detector pixel to plot
data_sigma = 5.0 # value for sigma-clipping of detector data
data_iters = 3 # number of iterations for data clipping
user_freq = 10.2 # INT_CAL: user frequency in Hz
ref_phase_file = $DPS_HAWCPIPE/data/phasefiles/refphases_180419.fits
phase_thresh = 50.0 # threshold in phase uncertainty (deg) for blanking␣

→˓pixels
save_phase = False # Save phase images to PHS suffix
savefolder = '' # Folder to save plots to. '' means same as input file

FLAT - step configuration
[flat]

filename glob to find the flat files
flatfile = flats/*OFT*.fits
list of keys that need to match flat and data file (only if flatfile=search)
flatfitkeys = 'SPECTEL1', 'MISSN-ID', 'FILEGPID', 'SCRIPTID'
Back up filename for auxiliary file(s). Can contain * and ? wildcards to match
multiple files to be selected using fitkeys (default = bkupflatfile/*.fits)
bkupflat = $DPS_HAWCPIPE/data/flats/*OFT.fits # Backup flat files

FLUXJUMP - Flux Jump step configuration
[fluxjump]

Filepathname specifying the jump gap map, alternatively a number for the
gap to be used for all pixels (default = '4600')
Default is a no-op map
jumpmap = $DPS_HAWCPIPE/data/fluxjumps/flux_jump_dummy.fits

FOCUS - step configuration
[focus]

widowisgood = True # Include widow pixels in the analysis (T) or only good␣
→˓pixels (F, will assume widow pixels are bad)

medianaverage = True # Run a median average box through the array to fill bad␣
→˓pixels (T) or not (F)

boxaverage = 5 # Size of the median average box (if medianaverage is True)␣
→˓in pixels

autocrop = True # Crop image automatically around the target (w/ boxsize =␣
→˓1/3 of image size)

cropimage = True # Crop portion (box) of the image for analysis? True or␣
→˓False

xyboxcent = 87,87 # If cropimage = True, central X/Y pixel position of the box␣
→˓to be cropped

boxsizecrop = 30 # If cropimage = True, size of the box to be cropped (in␣
→˓pixels)

primaryimg = '' # Specifies which image will be used for the Gaussian fit.␣
→˓If left blank, the first image will be used.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
95

SOF-US-HBK-OP10-2008
Rev. J

IMGMAP - Image map step
[imgmap]

maphdu = 'STOKES I' # HDU name to be used in the mapfile. The HDU used for␣
→˓the background image.

lowhighscale = 0.25, 99.75 # Low/High percentile for image scaling
colormap = 'plasma'
ncontours = 0 # Number of contours
fillcontours = True
colorcontour = 'gray'
grid = False
title = 'info' # Title in the polarization map
centercrop = False # Crop a region of the image. Default = False. Inputs: RA,

→˓ DEC, width, height in degrees.
watermark = '' # Text to add to the plot as a watermark

IP Correction for instrumental polarization step configuration
[ip]

IP from planets estimated using FS13.
#qinst = -0.0154, 0.0, -0.0151, 0.0028, -0.0129 # Fractional instrumental␣

→˓polarization in q
#uinst = -0.0030, 0.0, 0.0090, 0.0191, -0.0111 # Fractional instrumental␣

→˓polarization in u
Median q/u from below file
qinst = -0.0157, 0.0, -0.0164, 0.0009, -0.0104
uinst = -0.0038, 0.0, 0.0081, 0.0192, -0.0142
IP file from FS15 poldip
fileip = $DPS_HAWCPIPE/data/ip/hawc_ip_FS15_poldip_v1.fits

MERGE - step configuration
[merge]

beamsize = 4.84, 7.80, 7.80, 13.6, 18.2 # Beam FWHM size (arcsec) to write into BMAJ/
→˓BMIN header keywords

cdelt = 1.21, 1.95, 1.95, 3.40, 4.55 # Pixel size in arcseconds of output map.␣
→˓cdelt = beamsize/4

proj = TAN # Projection of output map
sizelimit = 3000 # Upper limit on map size (either axis, in pixels)
widowstokesi = True # Use widow pixels to compute Stokes I map
conserveflux = True # Apply flux conservation factor due to change in pixel size␣

→˓to all output images
fit_order = 2 # Fit order for local regression
fwhm = 4.84, 7.80, 7.80, 13.6, 18.2 # smoothing FWHM: beam size / 2
radius = 9.68, 15.6, 15.6, 27.2, 36.4 # fit window: beam size * 2
errflag = True # Use uncertainties when computing averages
edge_threshold = 0.5 # Set edge pixels to NaN
adaptive_algorithm = scaled # Adaptive smoothing kernel type (scaled, shaped, None)
fit_threshold = 0.0 # Deviation from weighted mean to allow for higher order fit
bin_cdelt = True # if input pixels have been binned, multiply the cdelt and radius␣

→˓by the binning factor

MKFLAT - Make flat file from INT_CAL files
[mkflat]

Path for the folder to write flat files to (default: .)
flatoutfolder = flats
Header Keyword to match input files to the same observation (default: FILEGPID)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
96

SOF-US-HBK-OP10-2008
Rev. J

groupkey = "SCRIPTID"
Chops to exclude from the beginning of the file (default: 1)
skip_start = 1
Chops to exclude from the end of the file (default: 1)
skip_end = 1
Raw data threshold for dead pixels (default: 10.0)

bad_dead = 10.0
Raw data threshold for ramping pixels (default: 2000000.0)

bad_ramping = 2000000
Threshold for HIGH STD of DMD SIGNAL to exclude pixels (default: 10.0)
normstd = 10.0
Threshold to eliminate pixels with LOW SIGNAL (default: [0.5, 0.5, 0.5])
ynormlowlim = 0.5, 0.5, 0.5
Threshold to eliminate pixels with HIGH NORMALIZED SIGNAL
(default: [10.0, 10.0, 10.0])
ynormhighlim = 10.0, 10.0, 10.0
Scale factor for T/R flatfield (default: 2.0)
TtoR = 2.0
Filename for auxiliary file(s). Can contain * and ? wildcards to match
multiple files to be selected using fitkeys (default = skycal/*.fits)
(default: skycal/*SCAL.fits)
scalfile = $DPS_HAWCPIPE/data/skycals/fs15/*.fits
Back up filename for auxiliary file(s). Can contain * and ? wildcards
to match multiple files to be selected using fitkeys
bkupscal = $DPS_HAWCPIPE/data/skycals/fs15/*.fits
List of header keys that need to match auxiliary data file
- only used if multiple files match skycal (default = [])
scalfitkeys = SPECTEL1

NODPOLSUB - Subtract L and R nods with HWP
[nodpolsub]

NOISE FFT and plots
[noisefft]

truncate = True

[noiseplots]

OPACITY - Correction for model atmospheric opacity
[opacity]

POLDIP - Polarization skydip step
[poldip]

hwp0 = 5.0 # Reference HWP angle
temp0 = 0.532 # Reference temperature (ADR setpoint)
maxrms = 0.1 # Maximum allowed reduced RMS

POLMAP - Polarization map step
[polmap]

maphdu = 'STOKES I' # HDU name to be used in the mapfile. The HDU used for the␣
→˓background image.

scalevec = 0.0003 # Scale factor for vector sizes
scale = True # Set to False to make all vectors the same length
rotate = True # True gives (B-Field) vectors

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
97

SOF-US-HBK-OP10-2008
Rev. J

debias = True # Use debiased polarizations
lowhighscale = 0.25,99.75 # Low/High percentile for image scaling
colorvec = 'black' # Vector colors
colormap = 'plasma'
ncontours = 20 # Number of contours
fillcontours = True
colorcontour = 'gray'
grid = True
title = 'info' # Title in the polarization map
centercrop = False # Crop a region of the image. Default = False. Inputs: RA,␣

→˓DEC, width, height in degrees.
watermark = 'Preview' # Text to add to the plot as a watermark
save = True

POLVEC - Polarization vector step configuration
[polvec]

telescope polarization efficiency
eff = 0.842, 0.9, 0.939, 0.975, 0.978

PREPARE - Prepare file for demodulation
[prepare]

detcounts = 'SQ1Feedback'# Name of the column containing the detector flux values R/
→˓T arrays

hwpcounts = 'hwpCounts' # Name of the input fits column containing the HWP counts␣
→˓(only used if column "HWP Angle" is not present)

hwpconv = 0.25 # Value to convert hwpcounts to HWP Angles (only used if␣
→˓column "HWP Angle" is not present)

labmode = False # If TRUE (processing lab data), will fill in with zeros a␣
→˓few columns and keywords that are important for the DRP

replacenod = True # If TRUE will replace Nod Offset by calculation based on RA/DEC.␣
→˓If False use original column (has problems)

chpoffsofiars = True # If TRUE will calculate Chop Offset based on SofiaChopR/S.␣
→˓If False the user should use colrename to specify which column to use

colrename = 'AZ_Error->Azimuth Error|EL_Error->Elevation Error|AZ->Azimuth|EL->
→˓Elevation|SIBS_VPA->Array VPA|NOD_OFF->Nod Offset Orig'

List of data columns to delete: The format ["column1","column2",...]
coldelete = hwpA,hwpB,FluxJumps

Number of samples to shift the data (default is 0 i.e. no shift)
traceshift = 0
List for PIXSCAL values for each band - to update PIXSCAL in the header
pixscalist = 2.57, 4.02, 4.02, 6.93, 9.43
Remove data Dropouts (i.e. data with RA==Dec==0)
removedropouts = True

REGION - Extract ds9 region file of polarization vectors
[region]

skip = 2 # Only plot every ith pixel. If skip =1 it will show every pixel. If␣
→˓cdelt = beamsize/4, skip=2 gives Nyquist sampling.

scale = True # Set to False to make all vectors the same length
rotate = True # Use rotated (B-Field) vectors
debias = True # Use debiased polarizations
length = 10.0 # Scale factor for length of polarization vectors in pixels.
mini = 0.0 # Do not plot vectors with flux < this fraction of peak flux
minp = 0.0 # Require percentage polarizations to be >= this value

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
98

SOF-US-HBK-OP10-2008
Rev. J

offset = 0, 0 # Offset in pixels in x,y (controls which pixels are extracted)
sigma = 3.0 # p/sigmap must be >= this value
minisigi = 200 # StokesI/ErrorI must be above this value
maxp = 50 # Pol. Degree must be below this value

ROTATE - Rotate Q and U from detector to sky frame step configuration
[rotate]

gridangle = -89.69, 0.0, -104.28, 37.42, 119.62 #Angle of the grid in degrees (for␣
→˓each waveband)

hwpzero_tol = 3.0 # Tolerance in the difference between commanded and actual␣
→˓initial HWP angles

hwpzero_option = 'commanded' # Option to use between "commanded" or "actual" in␣
→˓case the difference between the initial HWP angles is > hwpzero_tol

Run the scanmap image data reduction
[scanmap]

save = True
options = ''
subarray = 'R0,T0,R1'
use_frames = '800:-800'

Use scanmap to generate a flat
[scanmapflat]

save = True
options = ''
use_frames = '800:-800'

ScanMapFOCUS - Run scanmap on focus groups
[scanmapfocus]

save = True
groupkeys = 'FOCUS_ST' # header keywords to decide data group membership (|␣

→˓separated)
groupkfmt = '%.1f' # group key formats to force string comparison (| separated)

Run the scanmap pol data reduction
[scanmappol]

save = True
options = ''
vpa_tol = 5.0
use_frames = '800:-800'

SCANSTOKES - Calculate Stokes parameters for scanpol data
[scanstokes]

hwp_tol = 5.0 # HWP angles for Stokes parameters must differ by no more than␣
→˓45+-hwp_tol degrees

zero_level_method = none # Statistic for zero-level calculation (mean, median, none)
zero_level_radius = 9.68, 15.6, 15.6, 27.2, 36.4 # 2 * Beam FWHM size radius for␣

→˓averaging
zero_level_sigma = 5.0 # Sigma value for statistics clipping in non-auto mode
zero_level_region = header # Zero level region method (header, auto, or [RA, Dec,␣

→˓radius] in degrees)

SHIFT - Account for R/T misalignment and apply integer displacements (shifts)
[shift]

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
99

SOF-US-HBK-OP10-2008
Rev. J

angle1 = 0.0 # rotation angle of R1 relative to T1, in degrees␣
→˓counterclockwise

angle2 = 0.0 # rotation angle of R2 relative to T2, in degrees␣
→˓counterclockwise

mag = 1.0, 1.0 # Magnification of R relative to T, in the x,y pixel direction
disp1 = 0.0, 0.0 # Pixel displacement of R1 relative to T1, in the x,y directions
disp2 = 0.0, 0.0 # Pixel displacement of R2 relative to T2, in the x,y directions
gapx = 4.0 # displacement in x pixels between T1 and T2
gapy = 0.0 # displacement in y pixels between T1 and T2
gapangle = 0.0 # Rotation angle in degrees CCW between T1 and T2

[skycal]
normalize = False
sigma_lower = 3.0
sigma_upper = 3.0
ttor = 1.275
bins = 'fd'
scalfitkeys = SPECTEL1
dclfile = intcals/*DCL*.fits
dclfitkeys = 'SPECTEL1', 'MISSN-ID', 'DATE-OBS'
pixfile = pixel*.dat
ref_pixpath = $DPS_HAWCPIPE/data/pixdata/
ref_pixfile = pixel-A.170mK.F445.dat,'',pixel-C.170mK.F446.dat,pixel-D.170mK.F445.

→˓dat,pixel-E.170mK.F446.dat

SPLIT - Split data by HWP angle and nod position step configuration
[split]

Nod tolerance, as the percent difference allowed in number of chop cycles
between 1st and 2nd left, and between left and right
nod_tol = 50.0

STDPHOTCAL - Run photometry on standards and calibrate to Jy
[stdphotcal]

STOKES - Compute Stokes I, Q, U step configuration
[stokes]

hwp_tol = 5.0 # HWP angles for Stokes parameters must differ by no more than␣
→˓45+-hwp_tol degrees

erri = median # How to inflate errors in I. Can be median, mean, or none.
erripolmethod = meansigma # Options are "hwpstddev" or "meansigma"
removeR1stokesi = True # Remove R1 subarray for Stokes I
override_hwp_order = False # If True, the first two HWP angles will be used for Q,␣

→˓last two for U

WCS - Update Parallactic angle and crval1 and crval2 for a single file
[wcs]

add180vpa = True # Add 180 degrees to the SIBS_VPA
Small Offset (in pixels along x/y) between SIBS_X/Y and actual target position
offsibs_x = 0.0, 0.0, 0.0, 0.0, 0.0
offsibs_y = 0.0, 0.0, 0.0, 0.0, 0.0
labmode = False # If labmode = True, will ignore keywords and input parameters and␣

→˓create fake astrometry

ZEROLEVEL - Correct zero level for scanning imaging mode

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
100

SOF-US-HBK-OP10-2008
Rev. J

[zerolevel]
zero_level_method = none # Statistic for zero-level calculation (mean, median, none)
zero_level_radius = 9.68, 15.6, 15.6, 27.2, 36.4 # 2 * Beam FWHM size radius for␣

→˓averaging
zero_level_sigma = 5.0 # Sigma value for statistics clipping in non-auto mode
zero_level_region = header # Zero level region method (header, auto, or [RA, Dec,␣

→˓radius] in degrees)

Data Section
#=====================

Treatment of the FITS header: can include keyword replacement
The keyword value and comment must be printed as they would in a FITS header
If the value is another keyword, the value of that keyword will be used
instead (This only works if the other keywords starts with an alphabetic
character).
[header]

#INSTMODE = "'test' / instrument mode"
#CHPFREQ = "10.0 / Chop Frequency"
#SKYANGL = 0.0 / Sky Angle
#CHOPPING = T / Chopping flag
#CHPMODE = "'2-POINT' / Chopping mode"
#CHPAMP1 = 30000 / Chop Amplitude
#CHPANGLE = 0.0 / Chop Angle
#DETSIZE = "'(32,41)'"
#NHWP = "1 / Number of HWP angles"
#NODDING = T / Nodding flag
#NODANGLE = 92.8 / Nod Angle
#NODPATT = "'ABBA' / Nod Pattern"
#NODTIME = 5.0 / Nod Integration Time
#NODSETL = 0.05 / Nod Settle Time
#OBSRA = 5000 / Observation RA (now DOG units)
#OBSDEC = 5000 / Observation DEC (now DOG units)
#SCANNING = T / Scanning flag
#TAUOBS = 0.0 / Estimated optical depth

Merge Header Section: How to merge header keywords when headers from
several files are merged. Options are:
- FIRST (default), LAST: For all values
- DEFAULT: For all values (-9999 for ints, UNKNOWN for strings, etc)
- MIN, MAX, SUM: For numbers
- AND, OR: For boolean flags
- CONCATENATE: For strings
[headmerge]

ALTI_END = LAST
ASSC_AOR = CONCATENATE
ASSC_MSN = CONCATENATE
DTHINDEX = DEFAULT
LAT_END = LAST
LON_END = LAST
FBC-STAT = LAST
FOCUS_EN = LAST
SIBS_X = DEFAULT

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
101

SOF-US-HBK-OP10-2008
Rev. J

SIBS_Y = DEFAULT
UTCEND = LAST
WVZ_END = LAST
ZA_END = LAST
TRACERR = OR
TSC-STAT = LAST

Treatment for table values when combining images
Options are MIN, MED, AVG, FIRST, LAST, SUM
[table]

samples = SUM
chop offset = WTAVG
nod offset = WTAVG
hwp angle = WTAVG
azimuth = WTAVG
azimuth error = WTAVG
elevation = WTAVG
elevation error = WTAVG
array vpa = WTAVG
nod index = WTAVG
hwp index = WTAVG
nod offset orig = FIRST
framecounter = FIRST
crioframenum = WTAVG
hwpcounts = WTAVG
fasthwpa = WTAVG
fasthwpb = WTAVG
fasthwpcounts = WTAVG
a2a = WTAVG
a2b = WTAVG
b2a = WTAVG
b2b = WTAVG
chop1 = WTAVG
chop2 = WTAVG
criottlchopout = FIRST
sofiachops = WTAVG
sofiachopr = WTAVG
sofiachopsync = WTAVG
ai22 = MED
ai23 = MED
crioanalogchopout = FIRST
irigupdatediff = FIRST
timestamp = WTAVG
ra = FIRST
dec = FIRST
chop_vpa = FIRST
lon = FIRST
lat = FIRST
lst = WTAVG
los = WTAVG
xel = WTAVG
tabs_vpa = FIRST
pitch = WTAVG
roll = WTAVG

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
102

SOF-US-HBK-OP10-2008
Rev. J

nonsiderealra = WTAVG
nonsiderealdec = WTAVG
flag = WTAVG
pwv = FIRST
nodpositionreached = FIRST
trackerraoi3 = FIRST
trackerraoi4 = FIRST
trackerraoi5 = FIRST
r array imag = FIRST
t array imag = FIRST
r array imag var = FIRST
t array imag var = FIRST
chop offset imag = FIRST
r array avg = FIRST
t array avg = FIRST
phase corr = WTAVG
nod_off = WTAVG
centroidexpmsec = WTAVG
Centroid Values for FS15
centroidworkphase = WTAVG
centroidaoi = FIRST
SofiaHK values (temporary)
sofhkchopamp = WTAVG
sofhkbinning = WTAVG
sofhkaoi4col = WTAVG
sofhkaoi4row = WTAVG
sofhkaoi3col = WTAVG
sofhkaoi3row = WTAVG
sofhktrkaoi = WTAVG
sofhkseqphase = WTAVG
sofhkexptime = WTAVG
sofhkaoi4err = WTAVG
sofhkaoi3err = WTAVG
chop mask = FIRST

17 DRP Override Configuration File

Below is a sample override configuration file that demonstrates how to set override parameters to provide to the HAWC
pipeline. The parameters listed here are those most likely to change from one flight series to another.

HAWC Pipeline Configuration File - Overrides for OC8E,
flights F683 to F693
#
2020-09-14 S. Shenoy

Demodulate chops
[demodulate]

phasefile = $DPS_HAWCPIPE/data/phasefiles/masterphase_170307.fits

Flux Jump step configuration
[fluxjump]

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
103

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

jumpmap = $DPS_HAWCPIPE/data/fluxjumps/flux_jump_dummy.fits

Correction for instrumental polarization
[ip]

fileip = $DPS_HAWCPIPE/data/ip/hawc_ip_FS15_poldip_v1.fits

Make flat from int_cal
[mkflat]

scalfile = $DPS_HAWCPIPE/data/skycals/fs15/*.fits

WCS - Update Parallactic angle and crval1 and crval2 for a single file
[wcs]

offsibs_x = -0.578, -0.205, -0.395, -0.347, -0.306
offsibs_y = -3.028, -2.615, -2.005, -1.637, -1.260

18 Full Scan Map Configuration File

Below is a copy of the default global configuration file for the scan map algorithm. Other configuration files specifying
values for specific instruments or modes may override values in this file.

forget = name, source.despike, noiseclip, source.filter

projection = SFL
system = equatorial

The ordering of models in the default reduction pipeline.
ordering = offsets, drifts, correlated.obs-channels, weighting.frames, whiten, weighting,
→˓ despike, correlated.gradients, correlated.accel, source

The default 1/f stabilty time scale. Instruments should define their own.
stability = 15.0

Determine the velocity clipping based on stability and beam size...
vclip = auto

Determine accelaration clipping
aclip = 20

Downsample data as needed...
downsample = auto

Signal estimators to use ('median' or 'maximum-likelihood').
estimator = maximum-likelihood

perimeter = auto

mappingfraction = 0.5

pixeldata = auto

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
104

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

rounds = 6

smooth = minimal

clip = 30.0

blank = 30.0

Check for timestream gaps and fill with null frames as necessary
[fillgaps]

value = True

Remove the DC offsets before entering pipeline.
[level]

value = True

[pointing]
The telescope pointing tolerance (in beams), e.g. for positions switched
photometry
tolerance = 0.2

Specify the method for determining pointing offsets (also for pixelmap)
Choose between 'peak' and 'centroid'.
method = centroid

Use the least-squares method for fitting rather than default CRUSH method
lsq = True

Restrict pointing fits to a circular area around the nominal position.
The radius is specified in arcsec.
radius = 60.0
radius = None

Derive pointing only if the peak S/N exceeds a critical level
significance = 6.0

Discard the underexposed parts of the map when deriving pointing results
This does not affect the output image in any way
exposureclip = 0.25

suggest = None

[range]
The maximum fraction of samples which can be out-of-range before the
channel is flagged for being unusable.
flagfraction = 0.05

[gains]
value = True
estimator = maximum-likelihood

[drifts]

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
105

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

value = 30
method = blocks

[filter]
value = True
ordering = motion, kill, whiten

[[motion]]
range = 0.01:1.0
s2n = 6.0
above = 0.3

[[whiten]]
level = 2.0
proberange = auto

[weighting]
value = True
method = rms
noiserange = 0.1:10.0

[[frames]]
resolution = auto
noiserange = 0.3:3.0

[[scans]]
method = robust

[source]
value = True
type = map
sign = +
redundancy = 2

[[coupling]]
s2n = 5.0:*
range = 0.3:3.0

[[mem]]
lambda = 0.1

[[filter]]
type = convolution

[rcp]
[[gains]]

value = True

[array]
value = True
gainrange = 0.01:10

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
106

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

[despike]
value = True
level = 100.0
method = neighbours
flagfraction = 3e-3
flagcount = 10
framespikes = 3
width = auto

[dejump]
level = 2.0
minlength = 5.0

[indexing]
indexing = auto
saturation = 0.8

[pixelmap]
[[process]]

value = True

[skydip]
grid = 900.0
fit = tau, offset, kelvin
attempts = 10
[[uniform]]

value = True

[write]
source = True

[[scandata]]
value = True

[[png]]
value = False
plane = s2n
size = 500x500
color = colorful
bg = transparent
smooth = halfbeam

[[gnuplot]]
value = True

[parallel]
mode = hybrid
cores = 0.5
jobs = -1
idle = 0.5

[iteration]

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
107

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

[[1]]
forget = filter.kill

[[2]]
estimator = maximum-likelihood
despike.level = 30.0
clip = 10.0
blank = 10.0
[[[conditionals]]]

[[[[extended]]]]
blank = 100

[[3]]
drifts.method = auto
despike.level = 10.0
clip = 4.0
[[[conditionals]]]

[[[[extended]]]]
clip = 2.0

[[4]]
despike.method = absolute
clip = 2.0
[[[conditionals]]]

[[[[extended]]]]
blacklist = blank, despike

[[-2]]
add = filter.whiten

[[0.9]]
add = filter.whiten
[[[conditionals]]]

[[[[extended]]]]
add = whiten

[[-1]]
forget = source.mem, smooth
blacklist = clip, blank
add = source.correct, source.nosync
exposureclip = 0.04

[aliases]
whiten = filter.whiten
motion = filter.motion
kill = filter.kill
array = correlated.obs-channels
gradients = correlated.gradients
sky = correlated.sky
nonlinearity = correlated.nonlinearity
accel = correlated.accel-mag
final = iteration.-1

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
108

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

i = iteration
i1 = iteration.1

[conditionals]
[[system=focalplan]]

blacklist = point

[[source.type=skydip]]
blacklist = point, aclip, vclip, drifts, offsets, whiten, point
range.flagfraction = 0.75
add = sourcegains
beam = skydip.grid
lock = beam

[[source.type=pixelmap]]
system = focalplane
blacklist = pixeldata, exposureclip
forget = source.redundancy, rcp

[[extended]]
stability = 30.0
forget = filter.motion, weighting.frames, source.mem, correlated.gradients,␣

→˓weighting.scans
weighting.method = differential
correlated.*.gainrange = 0.01:100
drifts.value = 300
rounds = 15
smooth = halfbeam
blank = 100

[[chopped]]
forget = vclip, aclip, downsample, filter.motion

[[map]]
source.type = map

[[pixelmap]]
source.type = pixelmap

[[skydip]]
source.type = skydip

[[beammap]]
[[[pixelmap]]]

[[sources]]
add = source.fixedgains

[[split]]
add = smooth.external
forget = final.exposureclip

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
109

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

[[drifts]]
forget = offsets

[[offsets]]
forget = drifts

[[source.model]]
forget = clip

[[lab]]
blacklist = source, filter.motion, tau, filter, whiten, shift, point
forget = downsample
add = write.spectrum

[[derive]]
forget = pixeldata, vclip, aclip
blacklist = whiten
add = write.pixeldata
rounds = 30

[[source.flatfield]]
config = flatfield.cfg

[[write.ascii]]
blacklist = source.nosync

[[write.spectrum]]
blacklist = source.nosync

[[write.covar]]
blacklist = source.nosync

[[bright]]
config = bright.cfg

[[faint]]
config = faint.cfg

[[deep]]
config = deep.cfg

[[scanpol]]
config = scanpol.cfg

Use 'point' as a shorthand for determining the pointing offsets at the end
[[point]]

[[[iterations]]]
[[[[-1]]]]

add = pointing.suggest

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
110

SOF-US-HBK-OP10-2008
Rev. J

19 HAWC+ Scan Map Configuration File

Below is the HAWC+ configuration file for the scan map algorithm. Values in this file override those in the global
configuration file for HAWC reductions.

Load SOFIA defaults
config = sofia/default.cfg

projection = TAN

The ordering of models in the default reduction pipeline.
ordering = dejump, offsets, drifts, correlated.obs-channels, correlated.sky,␣
→˓correlated.nonlinearity, correlated.polarrays, correlated.telescope-x, correlated.
→˓chopper-x, correlated.chopper-y, correlated.los, correlated.pitch, correlated.roll,␣
→˓correlated.accel-|y|, weighting.frames, filter, weighting, despike, correlated.
→˓subarrays, correlated.gradients, correlated.bias, correlated.series, correlated.mux,␣
→˓correlated.rows, source
ordering = dejump, offsets, drifts, correlated.obs-channels, correlated.sky, correlated.
→˓nonlinearity, correlated.polarrays, correlated.telescope-x, correlated.chopper-x,␣
→˓correlated.chopper-y, correlated.los, correlated.pitch, correlated.roll, correlated.
→˓accel-|y|, weighting.frames, filter, weighting, despike, correlated.subarrays,␣
→˓correlated.gradients, correlated.bias, correlated.series, correlated.mux, correlated.
→˓rows, source

Specify the unit of the raw data
dataunits = count

unit = count

The gain conversion to readout units
gain = -1.0

The appropriate Jy/K conversion value (assuming 2.5m, 95% forward eff.)
K2Jy = 582

Shift data relative to coordinates by the specified amount (seconds).
shift = -0.014

Map even if many channels are flagged
mappingfraction = 0.2

Use the faster maximum-likelihood estimation from the start...
estimator = maximum-likelihood

1/f stability timescale in seconds
stability = 5.0

For scanpol mode, all output maps should have the same WCS
commonwcs = True

forget = write.png, write.eps, gnuplot, skydip
blacklist = calibrated, source.nosync

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
111

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

Use neighbor-based de-spiking all the way...

despike.method = neighbours
lock = despike.method

intcalfreq = {?fits.DIAG_HZ}

#outpath = /Users/dperera/test_data/hawc/crush/testing/my_reductions

My changes
rounds = 6
crushbugs = True
subarray = R0
End my changes

Worm analysis
#downsample = 1
#
[fixjumps]

value = True
r0 = True
r1 = True
t0 = True
t1 = True
blank = 0, 0.015 # The number of seconds to blank (before, after) a jump

Options to apply to pixels when loading channel data
Channels will be excluded if values are outside of the specified ranges
(gain.range, coupling.range) or are at a specific level (gain.exclude,
couling.exclude). The critical flags are those that will exclude a channel
from being included. Available flags are:
Flag '?' - Unknown
Flag 'X' - Dead
Flag 'B' - Blind
Flag 'd' - Discarded
Flag 'g' - Gain
Flag 'n' - Noisy
Flag 'f' - Degrees-of-freedom.
Flag 's' - Spiky
Flag 'r' - Railing/Saturated
Flag 'F' - Insufficient phase degrees-of-freedom
Flag '@' - Bad subarray gain
Flag 'b' - Bad TES bias gain
Flag 'm' - Bad MUX gain
Flag 'R' - Bad detector row gain
Flag 'M' - Bad series array gain
Flag 'T' - Flicker noise
Flag 'L' - LOS response
Flag '\' - Roll response
[pixels]

criticalflags = X,B,g
[[gain]]

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
112

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

range = 0.3:3.0
[[coupling]]

range = 0.3:2.5
exclude = 1.0

Assumes sign of source signals +, -, or 0
[source]

sign = +
[[coupling]]

s2n = 5.0:500.0

starting Oct 2016 run, assume real-time object coordinates (rtoc) are
recorded in the FITS for all sources, regardless of whether they are
sidereal or not.
[rtoc]

value = True

[subscan]
The minimum length of a valid scan in seconds.
minlength = 5.0

[fits]

Additional header keys to migrate into product headers from earliest
scan...
addkeys = SCRIPTID, OBSMODE, CALMODE, MCEMAP, HWPSTART, HWPINIT, NHWP, CHPONFPA,␣

→˓DTHSCALE

[chopper]
Shift chopper data to align with detectors
shift = 2

Set a tolerance (arcsec) for the chopper signal. It has to be within the
nominal amplitude value for the frame to be used. This is useful to avoid
smearing when reducing chopped data...
tolerance = 10

[vclip]
Discard slow scanning frames with entirely (instead of just
flagging them).
[[strict]]

value = True

[gyrocorrect]
Set a limit to what's the largest gyro drift that can be corrected...
(in arcsec)
max = 30

[drifts]
Set the initial 1/f timescale..
value = 30

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
113

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

[flag]
Flag some MUX lines that seem to be always bad...
mux = 6, 20, 24, 27, 32, 46-49, 56, 70, 86
Flag rows that seem always bad
row = 14, 15, 19, 52, 82, 83, 87

[rotation]
The overall rotation of the array from crush x,y coordinates to SI x,y.
value = 0.1
The relative rotations of the subarrays.
R0 = 0.0
R1 = 180.0
T0 = 0.5

[offset]
Subarray offsets (in channels)
R0 = 0.0, 0.0
R1 = 67.03, 39.0
T0 = 0.5, -0.5

[zoom]
zoom constants (T vs R)
T = 1.0

[weighting]
Flag channels outside an acceptable range of relative noise levels
noiserange = 0.3:3.0

[array]
The range of acceptable relative sky-noise gains.
gainrange = 0.3:3.0
[[signed]]

value = True

[biaslines]
Decorrelated on TES bias lines
value = True
gainrange = 0.3:3.0

[series]
[[nogains]]

value = True

[mux]
Decorrelate on SQUID multiplexed channels
gainrange = 0.3:3.0
[[nogains]]

value = True

[rows]
Decorrelate on detector rows (i.e. MUX address lines)
gainrange = 0.3:3.0

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
114

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

[tau]
Use's Bill Vacca's ATRAN-based polynomial model for calculating opacity...
value = atran

Use the measured PWV to calculate tau...
value = pwv

Calculate typical PWV values, instead of using the monitor data
value = pwvmodel

Set tau to 0; turn off calibration
value = 0.0

Refer opacity relations to the PWV value (which is recorded)
[[pwv]]

a = 1.0
b = 0.0

[skydip]
Fit skydips on restricted elevation range only...
elrange = 0:55

[notch]
width = 0.03
harmonics = 35

[obslog]
logging...
format = date\t flight\t scanno\t band\t object\t ?skydip\t obsmins(f1)\t chop.flag\

→˓t gyro.max(f1)\t ac.altkft(f1)\t tel.el(f1)\t env.pwv(f1)\t env.tamb(f1)\t dfoc(f1)

Date is like conditionals
[date]

[[*--2016-07-01]]
add = apr2016

[[2016-09-01--2016-11-01]]
add = oct2016

[[2016-11-30--2016-12-20]]
add = dec2016

[[*--2016-12-01]]
[[[conditionals]]]

[[[[tau.pwv]]]]
Use this model, whenever the pwv values aren't available or
cannot be trusted...
add = tau.pwvmodel

[[2016-12-03--2016-12-04]]
[[[conditionals]]]

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
115

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

[[[[tau.pwv]]]]
add = tau.pwvmodel

[[*--2017-05-01]]
jumpdata = {?configpath}/hawc_plus/flux_jump_FS13_v1.fits.gz

[[2017-05-01--2017-06-01]]
add = may2017

[[*--2017-10-01]]
rotation.value = 0.9
rotation.T0 = -0.5
offset.T0 = 0.18,-0.17

[[2017-10-01--2017-12-01]]
add = oct2017

[[2018-01-01--2018-07-16]]
add = oc6i

[[2018-07-17--2018-11-01]]
add = oc6k

[[*--2018-10-20]]
flag.row = 2, 19, 52, 82, 83, 87, 114, 122, 65, 69, 77
flag.mux = 6, 20, 24, 27-34, 40, 46-48, 50, 63, 70, 86

[[2019-01-01--2019-03-01]]
add = oc6t

[[2019-03-02--2019-08-01]]
add = oc7e

[[2019-08-02--2019-10-15]]
add = oc7f

[[2020-01-17--2020-02-01]]
add = oc7j

[[2020-09-09--2020-09-23]]
add = oc8e

[[2021-05-05--2021-05-22]]
add = oc8i

[[2021-08-28--2021-09-11]]
add = oc9d

[[2021-11-03--2021-11-05]]
add = oc9e

[conditionals]

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
116

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

If dealing with demodulated data, then load the appropriate
settings for reducing it
[[fits.PRODTYPE=demod]]

config = hawc_plus/demod.cfg

[[peakflux]]
scale = 1.18

[[fits.SIBS_X=15.5]]
Select specific subarrays only. E.g. if pointing to the center of R0,
then reduce R0/T0 only...
subarray = T0, R0
subarray = T0

Reduce skydips if OBSMODE, CALMODE or DIAGMODE is set to SKYDIP
[[fits.DIAGMODE=SKYDIP]]

add = skydip

[[fits.OBSMODE=SkyDip]]
add = skydip

Set the observing band based on the SPECTEL1 header value
[[fits.SPECTEL1=HAW_A]]

band = A

[[fits.SPECTEL1=HAW_B]]
band = B

[[fits.SPECTEL1=HAW_C]]
band = C

[[fits.SPECTEL1=HAW_D]]
band = D

[[fits.SPECTEL1=HAW_E]]
band = E

[[source.type=skydip]]
Reduce skydips with R0 only (least non-linear)
subarray = R0
For skydips, notch out the intcal signal (203.25 Hz / 68 --
and harmonics)
add = notch
lock = subarray
blacklist = fixjumps

[[chopped]]
Allow velocity clip for chopped data (mapping mode)
recall = vclip
For chopped data, remove the chopper-induced correlated signals...
add = correlated.chopper-x, correlated.chopper-y

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
117

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

When using non-linear response corrections, make sure the drift window
covers the entire scan...
[[correlated.nonlinearity]]

drifts = max

[[extended]]
stability = 10.0

Use shorter 'stability' timescale for short scans, such as focus scans,
to get the crispest possible images...
[[obstime<45]]

stability = 2.5

[[may2017]]
jumpdata = {?configpath}/hawc_plus/flux_jump_FS14_v1.fits.gz

[[oct2017]]
jumpdata = {?configpath}/hawc_plus/flux_jump_FS15_v3.fits.gz
Apply correction for gyro drifts
add = gyrocorrect

[[sourcegains]]
If the couplings are merged into the correlated gains, then do not
decorrelate on sky separately...
blacklist = sky

Previously weird intcalfreq = fits.DIAG_HZ, then transfered to this
[[fits.DIAG_HZ!=-9999.0]]

notch.frequencies = fits.DIAG_HZ

Load date-based configuration overrides...
[[apr2016]]

config = hawc_plus/2016-04.cfg

[[oct2016]]
config = hawc_plus/2016-10.cfg

Load the appropriate configuration for each band
[[band=A]]

config = hawc_plus/band-A.cfg

[[band=B]]
config = hawc_plus/band-B.cfg

[[band=C]]
config = hawc_plus/band-C.cfg

[[band=D]]
config = hawc_plus/band-D.cfg

[[band=E]]

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
118

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

config = hawc_plus/band-E.cfg

If pixel data was loaded from a previous band
[[pixeldata]]

Decorrelate sky signal (separated from temperature signal)
add = sky

Never segment scans if using them for determining flatfields.
[[write.flatfield]]

blacklist = segment

[aliases]
Define various shorthands for decorrelations
pols = correlated.polarrays
subs = correlated.subarrays
biaslines = correlated.bias
mux = correlated.mux
rows = correlated.rows
series = correlated.series
accel = correlated.accel-|y|
los = correlated.los
roll = correlated.roll
gradients = correlated.gradients

[iteration]
[[-2]]

Decorrelate on the series arrays (heat-sinking)
series = True

[[-1]]
[[[conditionals]]]

Never smooth focus scans...
[[[[fits.CALMODE=Focus]]]]

blacklist = smooth

Part X

Appendix: Required Header Keywords
The file below defines all keywords that the HAWC pipeline checks for validity before proceeding. It is normally located
in the hawc distribution at hawc/pipeline/config/header_req_config.cfg. The path to this file should be specified in the
pipeline configuration file under the ‘[checkhead]’ section in order to perform the header check.

HAWC pipeline header requirements configuration file
#
Keywords in this list are only those required for successful
data reduction (grouping and processing). There may be more

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
119

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

keywords required by the SOFIA DCS. This file is used
by StepCheckhead.
#
Requirement value should be *, chopping, nodding, dithering,
or scanning (as denoted by the corresponding FITS keywords).
* indicates a keyword that is required for all data. All
others will only be checked if they are appropriate to the
mode of the input data.
#
DRange is not required to be present in the configuration --
if missing, the keyword will be checked for presence only. If
drange is present, it will be checked for an enum requirement
first; other requirements are ignored if present. Min/max
requirements are only used for numerical types, and are inclusive
(i.e. the value may be >= min and <= max).
#
2016-08-22 Melanie Clarke: First version

[CHOPPING]
requirement = *
dtype = bool

[CHPAMP1]
requirement = chopping
dtype = float
[[drange]]

min = -1125
max = 1125

[CHPANGLE]
requirement = chopping
dtype = float
[[drange]]

min = -360
max = 360

[CHPCRSYS]
requirement = chopping
dtype = str
[[drange]]

enum = TARF, ERF, SIRF

[CHPFREQ]
requirement = chopping
dtype = float
[[drange]]

min = 0.0
max = 20.0

[CHPONFPA]
requirement = chopping
dtype = bool

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
120

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

[DATE-OBS]
requirement = *
dtype = str

[DITHER]
requirement = *
dtype = bool

[DTHINDEX]
requirement = dithering
dtype = int
[[drange]]

min = 0

[DTHSCALE]
requirement = dithering
dtype = float

[DTHXOFF]
requirement = dithering
dtype = float

[DTHYOFF]
requirement = dithering
dtype = float

[EQUINOX]
requirement = *
dtype = float

[EXPTIME]
requirement = *
dtype = float
[[drange]]

min = 0.0

[FOCUS_EN]
requirement = *
dtype = float
[[drange]]

min = -5000.0
max = 5000.0

[FOCUS_ST]
requirement = *
dtype = float
[[drange]]

min = -5000.0
max = 5000.0

[HWPSTART]

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
121

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

requirement = nodding
dtype = float
[[drange]]

min = -360.0
max = 360.0

[INSTCFG]
requirement = *
dtype = str
[[drange]]

enum = TOTAL_INTENSITY, POLARIZATION

[INSTMODE]
requirement = *
dtype = str
[[drange]]

enum = C2N (NMC), OTFMAP

[INSTRUME]
requirement = *
dtype = str
[[drange]]

enum = HAWC_PLUS

[MCEMAP]
requirement = scanning
dtype = str

[NHWP]
requirement = nodding
dtype = int
[[drange]]

min = 1

[NODDING]
requirement = *
dtype = bool

[NODPATT]
requirement = nodding
dtype = str
[[drange]]

enum = ABBA, A

[OBJECT]
requirement = *
dtype = str

[OBS_ID]
requirement = *
dtype = str

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
122

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

[SIBS_X]
requirement = *
dtype = float

[SIBS_Y]
requirement = *
dtype = float

[SMPLFREQ]
requirement = *
dtype = float
[[drange]]

min = 1.0

[SPECTEL1]
requirement = *
dtype = str
[[drange]]

enum = HAW_A, HAW_B, HAW_C, HAW_D, HAW_E

[SPECTEL2]
requirement = *
dtype = str
[[drange]]

enum = NONE, HAW_HWP_A, HAW_HWP_B, HAW_HWP_C, HAW_HWP_D, HAW_HWP_E, HAW_HWP_Open,
→˓ HAW_HWP_Offset1, HAW_HWP_Offset2, HAW_HWP_Offset3

[SRCTYPE]
requirement = *
dtype = str
[[drange]]

enum = POINT_SOURCE, COMPACT_SOURCE, EXTENDED_SOURCE, OTHER, UNKNOWN

[TELDEC]
requirement = *
dtype = float
[[drange]]

min = -90.0
max = 90.0

[TELRA]
requirement = *
dtype = float
[[drange]]

min = 0.0
max = 24.0

[TELVPA]
requirement = *
dtype = float
[[drange]]

min = -360.0

(continues on next page)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
123

SOF-US-HBK-OP10-2008
Rev. J

(continued from previous page)

max = 360.0

[UTCSTART]
requirement = *
dtype = str

Part XI

Appendix: Change notes for the HAWC+ pipeline

20 Significant changes

Below are listed the most significant changes for the HAWC+ pipeline over its history, highlighting impacts to science
data products. See the data handbooks or user manuals associated with each release for more information.

For previously processed data, check the PIPEVERS keyword in the FITS header to determine the pipeline version
used.

20.1 HAWC DRP v3.0.0

User manual: Rev. J

• Replaced the Java sub-pipeline for reconstructing scanned maps with a Python implementation
(sofia_redux.scan).

• Added optional step to correct the zero level in total intensity scan maps.

20.2 HAWC DRP v2.7.0 (2021-08-23)

User manual: Rev. H

• Added support for generating noise plots from lab data.

• Fixed a time accounting bug in the EXPTIME keyword for scan-pol data. Prior to this version, EXPTIME in the
reduced data products counted only the exposure time from a single HWP angle.

• Added new visualization tools to the pipeline interface and QAD tool.

20.3 HAWC DRP v2.6.0 (2021-04-26)

User manual: Rev. G

• Improvements to error estimates, edge pixel handling, and adaptive smoothing in the resampling algorithm.

• Introduce a pipeline mode to be used to generate new skycal files, scan-mode flats, and bad pixel lists from scans
of bright sources.

• Add preview images (*.png files) for all final data products.

• Improvement for parallel processing across disparate architectures.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
124

SOF-US-HBK-OP10-2008
Rev. J

• Add an optional pixel-binning step for the chop-nod pipeline, to allow improved S/N at the cost of decreases
resolution.

• Introduce a zero-level correction algorithm for scanning polarimetry maps of large, diffuse sources.

20.4 HAWC DRP v2.5.0 (2020-06-09)

User manual: Rev. F

• Python code refactored into common namespace, for compatibility with other SOFIA pipelines.

• Improve error estimates for photometry profile fits for flux standards.

20.5 HAWC DRP v2.4.0 (2020-01-15)

User manual: Rev. E

• Add SIBS offset value calculation in FITS headers (SIBS_DXE, SIBS_DE), for computing pointing corrections
for the scan-mode pipeline.

• Internal C library replaced with Python algorithms.

20.6 HAWC DRP v2.3.2 (2019-09-17)

User manual: Rev. D

• Scan mode data frames at the beginning and end of observations are now trimmed, by default, to account for the
pause between data readouts begin/end and telescope movement begin/end.

• Add option to allow manual override for Stokes combination, when HWP angle is inaccurately recorded.

20.7 HAWC DRP v2.3.1 (2019-08-06)

User manual: Rev. D

• Fix for occasional WCS offset error in scan-pol mode.

20.8 HAWC DRP v2.3.0 (2019-07-02)

User manual: Rev. D

• Scanning polarimetry now groups data in sets of 4 HWP angles and combines the data after computing Stokes
parameters, rather than running common HWP angles through the CRUSH sub-pipeline together. This allows
better correction for sky rotation angle (VPA).

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
125

SOF-US-HBK-OP10-2008
Rev. J

20.9 HAWC DRP v2.2.0 (2019-05-24)

User manual: Rev. D

• Fix for parameter resets between files in a single reduction run.

• Revise Python packaging structure to avoid manual C library compilation.

20.10 HAWC DRP v2.1.0 (2019-02-21)

User manual: Rev. D

• Introduce support for scanning polarimetry.

• Flux calibration improvements: add automated photometry routines for flux standards, move scan-mode calibra-
tion out of CRUSH sub-pipeline and into the same Python step used for chop-nod mode. Default saved products
are changed.

• Introduced option for sigma-clipping on telescope velocity in the scan modes.

20.11 HAWC DRP v2.0.0 (2018-09-24)

User manual: Rev. C

• Refactored all Python 2 code into Python 3.

• Integrated pipeline algorithms into Redux interface for consistency with other SOFIA pipelines.

• Fixes for BUNIT keywords in extension headers.

20.12 HAWC DRP v1.3.0 (2018-05-17)

User manual: Rev. B

• Introduce instrumental polarization maps to correct IP for each detector pixel.

• Modify background subtraction to apply to Stokes Q and U as well as Stokes I images.

• Remove unused, empty pixel covariance planes from output data products.

• Demodulation step separated into two parts in order to separate pixel flagging from filtering, to allow inspection
of the flagged data.

• Outlier rejection improvements for the time-series combination step.

• Add diagnostic plots (*DPL*.png) of demodulated data.

• Error propagation improvements: calculating initial errors from raw samples (before demodulation and R-T
subtraction), and propagating covariance between Stokes parameters.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
126

SOF-US-HBK-OP10-2008
Rev. J

20.13 HAWC DRP v1.2.0 (2017-11-09)

User manual: Rev. A

• Track all input MISSN-IDs in the ASSC_MSN FITS keyword.

20.14 HAWC DRP v1.1.1 (2017-05-17)

User manual: Rev. A

• Fix sign error for WCS in SI reference frame.

20.15 HAWC DRP v1.1.0 (2017-05-02)

User manual: Rev. A

• Introduce flats for chop-nod mode derived from internal calibrator files bracketing science observations.

• Update scan mode opacity corrections to match chop-nod mode method (from ATRAN model).

20.16 HAWC DRP v1.0.1 (2017-01-30)

User manual: Rev. -

• Fix for bad pixel mask handling for T array.

20.17 HAWC DRP v1.0.0 (2017-01-25)

User manual: Rev. -

• Initial release.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
127

	I Introduction
	II SI Observing Modes Supported
	HAWC+ Instrument Information
	HAWC+ Observing Modes

	III Algorithm Description
	Chop-Nod and Nod-Pol Reduction Algorithms
	Prepare
	Demodulate
	Flat Correct
	Align Arrays
	Split Images
	Combine Images
	Subtract Beams
	Compute Stokes
	Update WCS
	Subtract Instrumental Polarization
	Rotate Polarization Coordinates
	Correct for Atmospheric Opacity
	Calibrate Flux
	Subtract Background
	Rebin Images
	Merge Images
	Compute Vectors

	Scan Reduction Algorithms
	Signal Structure
	Sequential Incremental Modeling and Iterations
	Initialization and Scan Validation
	DC Offset and 1/f Drift Removal
	Correlated Noise Removal and Gain Estimation
	Noise Weighting
	Despiking
	Spectral Conditioning
	Map Making
	Point-Source Flux Corrections
	Scan Map Output

	Scan-Pol Reduction Algorithms
	Other Resources

	IV Data Products
	File names
	Data format
	Pipeline products

	V Grouping Level 0 Data for Processing
	VI Configuration and Execution
	Installation
	External Requirements
	Source Code Installation

	Configuration
	Input Data
	Auxiliary Files

	Automatic Mode Execution
	Manual Mode Execution
	Basic Workflow
	Display Features

	Important Parameters

	VII Data Quality Assessment
	VIII Appendix: Scan Map Option Glossary
	IX Appendix: Sample Configuration Files
	Full DRP Configuration File
	DRP Override Configuration File
	Full Scan Map Configuration File
	HAWC+ Scan Map Configuration File

	X Appendix: Required Header Keywords
	XI Appendix: Change notes for the HAWC+ pipeline
	Significant changes
	HAWC DRP v3.0.0
	HAWC DRP v2.7.0 (2021-08-23)
	HAWC DRP v2.6.0 (2021-04-26)
	HAWC DRP v2.5.0 (2020-06-09)
	HAWC DRP v2.4.0 (2020-01-15)
	HAWC DRP v2.3.2 (2019-09-17)
	HAWC DRP v2.3.1 (2019-08-06)
	HAWC DRP v2.3.0 (2019-07-02)
	HAWC DRP v2.2.0 (2019-05-24)
	HAWC DRP v2.1.0 (2019-02-21)
	HAWC DRP v2.0.0 (2018-09-24)
	HAWC DRP v1.3.0 (2018-05-17)
	HAWC DRP v1.2.0 (2017-11-09)
	HAWC DRP v1.1.1 (2017-05-17)
	HAWC DRP v1.1.0 (2017-05-02)
	HAWC DRP v1.0.1 (2017-01-30)
	HAWC DRP v1.0.0 (2017-01-25)

