L1551 IRS 5

Atomic shocks in L1551 IRS 5: **SOFIA-upGREAT** [OI] observations

Yao-Lun Yang Star and Planet Formation Lab, RIKEN & University of Virginia SOFIA tele-talk Apr. 06, 2022

Image compiled by Robert Gendler with the data taken by Bo Reipurth with Subaru

Neal Evans Agata Karska Lars Kristensen Rebeca Aladro Jon Ramsey Joel Green Jeong-Eun Lee

Outflows as a tracer of star formation

Prestellar cores

Protostellar cores

Protoplanetary disks

Outflow signatures are nearly ubiquitously associated with protostars

Credit: NASA/JPL-Caltech/R. A. Gutermuth (Harvard-Smithsonian CfA)

Yao-Lun Yang | RIKEN & UVa

Plunkett+2013

3

Outflow embedded jet

Machida+2015

Emission of molecular outflows

Lee+2017a

Adapted from Hollenbach 1985

Adapted from Hollenbach 1985

7

Adapted from Hollenbach 1985

Adapted from Hollenbach 1985

Adapted from Hollenbach 1985

Hollenbach & McKee 1989

[OI] and CO are the dominant coolants in shocks

Hollenbach & McKee 1989

Yao-Lun Yang | RIKEN & UVa

van Dishoeck+2021 (see also Karska+2018)

11

Outflow-envelope interaction probed by CO and H_2O

Herschel WISH program; van Dishoeck+2021

Cavity shocks, spot shocks, & bullets

H₂O 1₁₀-1₀₁

van Dishoeck+2021

Yao-Lun Yang | RIKEN & UVa

Kristensen+2017b

13

[OI] emission dominates the shock knots

Declination

Yao-Lun Yang | RIKEN & UVa

Nisini+2015

SOFIA/GREAT provides unique capability to resolve the [OI] line

[OI] emission shows a high-velocity component

Hll region S106 in Cygnus X

Schneider+2018

Velocity-resolved [OI] emission suggests jet-powered outflows

G5.89-0.39

Yao-Lun Yang | RIKEN & UVa

High-velocity [OI] emission> CO 16-15

Leurini+2015

[OI] 63 µm line comparable with CO 16-15 in intermediate-mass source

Cep E-mm

(J2000)

Dec.

Yao-Lun Yang | RIKEN & UVa

Gusdorf+2017

Weak but consistent [OI] line profile with high-J CO in low-mass source

NGC 1333 IRAS 4A

Kristensen+2017a

Yao-Lun Yang | RIKEN & UVa

19

FIFI-LS observations show outflow-tracing [OI] emission

Yao-Lun Yang | RIKEN & UVa

Sperling+2021

FIFI-LS survey probe the outflow feedback in massive protostars

NGC 7538 IRS 9

Program 09_0169, PI: Y.-L. Yang

Fallscheer (University of Victoria), Mike Reid (University of Toronto) and the Herschel HOBYS team

Yao-Lun Yang | RIKEN & UVa

Led by Lianis V Reyes Rosa (UVA)

Reyes Rosa, **Yang**+ in prep.

Outflows in Class I protostar: a case study of an iconic system

L1551 IRS 5

Snell, Loren, and Plambeck 1980

Hayashi+2009

Twin high-velocity jets of L1551 IRS 5

Chemically rich binary protostars with a circumbinary disk

Binary Class I protostar

Takakuwa+2020 (see also Cruz-Sáenz de Miera+2019)

Herschel observations show hints of outflow-tracing [OI] emission

Lee+2014

Yao-Lun Yang | RIKEN & UVa

Green, Yang+2016

Velocity-resolved observations of [OI] and [CII]: from Herschel to SOFIA

Yao-Lun Yang | RIKEN & UVa

Velocity-resolved observations of [OI] and [CII]: from Herschel to SOFIA

Yao-Lun Yang | RIKEN & UVa

[**O**I]

SOFIA-upGREAT observations

Yang+2022

[**O**I]

SOFIA-upGREAT observations

0.4

-0.4

0.4

0.2

-150

Center

-100

Temperature [K]

Red

Yang+2022

PDR contributes only 3% of [OI] flux

[CII] emission as an indicator of PDR contribution

Tielens & Hollenbach 1985

Yao-Lun Yang | RIKEN & UVa

Consistent with KAO observations

The absence of a corresponding redshifted [O I] emission feature is rather puzzling since IRS 5 certainly drives a bipolar flow. Either there are no HH objects associated with the redshifted flow or these exist but are invisible in the 63 μ m line.

Yao-Lun Yang | RIKEN & UVa

Line centroid at -43±22 km/s

Cohen+1985

Dust in envelope blocks the red-shifted emission

Yao-Lun Yang | RIKEN & UVa

Envelope appears opaque in NIR toward the red-shifted outflow

Yao-Lun Yang | RIKEN & UVa

Yao-Lun Yang | RIKEN & UVa

The origin of [OI] emission

Narrow line -> Envelope

Broad line (>20 km/s) at systemic velocity

- Cavity shocks (Mottram+2014)
- Disk wind (Yvart+2016)
- Turbulent mixing (Liang+2020)

Extremely high-velocity emission at > 50 km/s

Origins of the [OI], high-J CO, and H₂O emission

Yao-Lun Yang | RIKEN & UVa

Origins of the [OI], high-J CO, and H₂O emission

 $FWHM = 87.5 \pm 32.3 \text{ km/s}$ $v = -30.0 \pm 19.6$ km/s

 $FWHM = 21.0 \pm 4.9 \text{ km/s}$ (fixed at systemic velocity)

Yang+2022

The ~20 km s⁻¹ component: disk wind or turbulent mixing

Only spot shocks or jet can produce the extremely broad component

The jet is uniquely traced by the [OI] 63 µm line

 $FWHM = 87.5 \pm 32.3 \text{ km/s}$ $v = -30.0 \pm 19.6$ km/s

Yao-Lun Yang | RIKEN & UVa

 $FWHM = 21.0 \pm 4.9 \text{ km/s}$ (fixed at systemic velocity)

Oxygen abundance in star formation

Yao-Lun Yang | RIKEN & UVa

van Dishoeck+2021

Oxygen abundance in a shock knot of NGC 1333 IRAS 4A

Atomic oxygen accounts for ~15% of total oxygen

Yao-Lun Yang | RIKEN & UVa

Kristensen+2017a

Atomic O dominates the shocks and the jet

Atomic O dominates the shocks and the jet

Momentum conservation tested by multiple outflow tracers

Momentum of the outflowing gas, **P**, would be conserved in various tracers

$\mathbf{P}_{wind} = \mathbf{P}_{[OI]} = \mathbf{P}_{CO}$ $\mathbf{P} = M_V = M_{CO} v_{CO}$

assume 300 km/s from [Fe II] (Pyo+2009)

$$\mathbf{P}_{\rm CO}/(\mathbf{t}_{\rm CO} \, \mathbf{v}_{\rm w}) = \mathbf{F}_{\rm CO}/\mathbf{v}_{\rm w}$$

correct for inclination of 30° (Chou+2014)

Momentum conservation tested by multiple outflow tracers

Momentum of the outflowing gas, **P**, would be conserved in various tracers

$$= \mathbf{P}_{[OI]} = \mathbf{P}_{CO} \qquad \mathbf{P} = \mathbf{M}_{V} = \mathbf{M}_{CO} \mathbf{v}_{CO}$$

assume 300 km/s from [Fe II] (Pyo+2009)

$$P_{CO}/(t_{CO}v_{w}) = F_{CO}/v_{w}$$

correct for inclination of 30° (Chou+2014)

How does the intrinsic mass loss rate vary over time?

assume 300 km/s from [Fe II] (Pyo+2009)

$$\dot{M}_{w} = P_{CO}/(t_{CO}v_{w}) = F_{CO}/v_{w}$$

correct for inclination of 30° (Chou+2014)

CO 1-0

Snell & Schloerb 1985

CO 2-1

CO 3-2

Yildiz+2015

HI wind (Arceibo)

Giovanardi+1992

HI wind (Arceibo)

Giovanardi+1992

Yao-Lun Yang | RIKEN & UVa

[OI] wind - FIFI-LS

Other tracers

Yao-Mano-Kaung Yang KEUVa UVa

- 1. [OI] luminosity (Hollenbach 1985) -> \dot{M}_{w}
- 2. $\dot{M}_{w} = M_{[OI]} / t_{[OI]}$

Other tracers

Yao-Mano-Kaung Yarik EUVa UVa

- 1. [OI] luminosity (Hollenbach 1985) -> \dot{M}_{w}
- 2. $\dot{M}_{w} = M_{[OI]} / t_{[OI]}$

Yao-Mano-Kaung Yang KEUVa UVa

- 1. [OI] luminosity (Hollenbach 1985) -> \dot{M}_{w}
- 2. $\dot{M}_{w} = M_{[OI]} / t_{[OI]}$

- Shocks dominate the [OI] emission in L1551 IRS 5. The extremely broad component of [OI] is detected for the first time.
- Atomic oxygen is the major oxygen carrier in the shocks, accounting for ~70% of volatile oxygen.
- The outflow of L1551 IRS 5 agrees with a momentum-conserved outflow, showing the intrinsic mass loss rate varying up to a factor of 3 over 30-50 kyr.
- Follow-up velocity-resolved [OI] observations in the outflows would confirm the jet nature of the extremely broad component.

Summary

