Universities Space Research Association

National Aeronautics and Space Administration

Prestellar Feedback in Massive Star-Forming Regions

Postdoctoral Researcher @SOFIA Science Center/USRA/NASA SOFIA Tele-Talk

WEDNESDAY / 20 JULY 2022 / 9:00 AM (PDT)

Results from our recently *published* two papers

1. *Kavak et al., 2022* (Kavak+22a)

2. Kavak et al., 2022 (Kavak+22b)

Astronomy & Astrophysics manuscript no. output March 31, 2022

Breaking Orion's Veil bubble with fossil outflows

Ü. Kavak^{1,2,3,4}, J. R. Goicoechea⁵, C. H. M. Pabst^{4,5}, J. Bally⁶, F. F. S. van der Tak^{2,1}, and A. G. G. M. Tielens⁴

- ¹ Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands e-mail: ukavak@sofia.usra.edu
- ² SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands
- ³ SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N232-12, Moffett Field, CA 94035, USA
- ⁴ Leiden Observatory, Leiden University, PO Box 9513, NL-2300RA, Leiden, the Netherlands
- ⁵ Instituto de Física Fundamental, CSIC, Calle Serrano 121-123, 28006 Madrid, Spain
- ⁶ Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80389, USA

Astronomy & Astrophysics manuscript no. output March 31, 2022

©ESO 2022

Dents in the Veil: Protostellar feedback in Orion

Ü. Kavak^{1,2,3,4}, J. Bally⁵, J. R. Goicoechea⁶, C. H. M. Pabst^{4,6}, F. F. S. van der Tak^{2,1}, and A. G. G. M. Tielens⁴

- ¹ Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands e-mail: ukavak@sofia.usra.edu
- ² SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands
- ³ SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N232-12, Moffett Field, CA 94035, USA
- ⁴ Leiden Observatory, Leiden University, PO Box 9513, NL-2300RA, Leiden, the Netherlands
- ⁵ Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80389, USA
- ⁶ Instituto de Fisica Fundamental. CSIC. Calle Serrano 121-123. 28006 Madrid. Snain

Jets/Outflows have been proposed to solve key questions in star formation research

- Explain the low-mass star-formation rate (SFR) and low-mass star formation efficiency (Krumholz+14, Guszejnov+21, Verliat+22)
- 2. Remove **angular momentum** from the starforming regions (Pudritz+07, Frank+14)
- 3. Explain observed **initial mass function** (IMF; Kroupa+13, Kroupa+14, Grudic+21)
- 4. Explain the observed level of **turbulence** at various scales (Frank+14, Guszejnov+21)
- 5. Sustain and enhance **pre-existing** and **recent molecular cloud turbulence** (Cunningham+09; Stanke+22, Kavak+22 (a, b))

Science Questions

How does the "FEEDBACK" of a massive star affect the birth envoirenment?

Pre-stellar feedback vs. **Main sequence** feedback?

Orion Nebula

Orion Nebula is a **unique laboratory** for these types of feedback studies.

Orion Veil is a shell which lies in front of the Trapezium Cluster

Orion Nebula – WISE

Orion Nebula

Veil shell is mainly driven by *stellar winds* from θ¹ Ori C (Pabst+19).

A protruding structure (green solid line) appear at the north-west of the Veil Shell.

Orion Nebula – WISE

Orion Veil and Its protrusion (Kavak+22a)

SOFIA/upGREAT C+ SQUAD Large Program (PI: Xander Tielens; 16 arcsec and 0.3 km/s; rms noise of $T_{\rm mb}$ = 1.14 K (78 square tiles)

Integrated intensity [-5, +15 km/s] map of the Orion Nebula

Our Questions

1. Is it also due to the stellar winds as found by Pabst+19?

2. Is it a different feedback mechanism?

3. If so, what is the feedback mechanism?

Integrated intensity [-5, +15 km/s] map of the protrusion

Expanding shells and PV Diagrams

The size (1.3 pc) to maximum expansion velocity (12 km/s) gives us the expansion timescale of $1.06 \times 10^5 \text{ yr}$

Comparison of [CII], ¹²CO and ¹³CO

Background image is *Spitzer* 8 micron map

Red circles are 18 arcseconds

Stellar winds?

If the protrusion is driven by *stellar winds of 0[†] Ori C*, the protrusion itself should expand like the Veil shell

The protrusion has a lifetime of 1.6 × 10⁵ years due to photo-ablation from the inner surface of the protrusion.

Driving mechanism?

Obstacles and blow-out of the Veil shell?

Least resistance toward the northwest?

Both the expansion of the protrusion and the bipolar jet-like structures seen toward the Veil shell are difficult to reconcile with this scenario.

Driving mechanism?

Outflows?

Driving mechanism?

Ionizing source?

The number of ionizing indicates an *O-type star.*

The honor goes to *Trapezium cluster*, especially θ^1 **Ori C**.

Driving star?

$$\left[\frac{EM}{\text{pc cm}^{-6}}\right] = 4.197 \times 10^{17} \times I_{\text{H}\alpha}$$

$$\mathbb{N}_{\mathrm{Lyc}} = A \times EM \times 2.6 \times 10^{-13}$$

$$1.1 \times 10^{49}$$
 photons s⁻¹

Outflows?

The protrusion is a *pre-existing* structure in OMC-1

It is the result of *fossil outflow* activity in the OMC-1 core

Driving star?

(Data points from Maud+15)

Table 1. Comparison of the masses and energetics of the protrusion with the Veil shell.

	Veil shell ^(a)	Protrusion
Size (pc)	2.7	1.3 ^(b)
Thickness (pc)	0.5	0.1
Density ($\times 10^3$ cm ⁻³)	1–10	0.1–1
$E_{\rm kin} (10^{46} {\rm ~erg})$	250	7
Momentum (M_{\odot} km s ⁻¹)	20 000	360–540
Expansion velocity (km s ⁻¹) Mass of neutral gas (M_{\odot})	13 1500	12 30–45

Notes. ^(a)From Pabst et al. (2020). ^(b)The protrusion size is measured from the wall of the Veil shell to the outer shell in the northwestern direction.

The momentum deposited by fossil outflows is *5%* of the momentum that Veil shell has.

Conclusion

The cavity to the north-west of the Veil shell is a *pre-existing cavity* formed by fossil outflow activity which could *break* the bubble.

The momentum deposited by fossil outflows is *5%* of the momentum that Veil shell has. Orion Veil shell has been assumed to be a *close, expending* shell!

What are these *structures* in the Veil shell?

PV diagrams

cuts are 14 x 0.5 arcmin

PV Diagram Movie

PV Diagram Movie

Dents in the Veil shell

RA NASA

The velocity-resolved [CII] line observations from SOFIA are crucial to study protostellar feedback.

[CII] spectrum toward dents

26

Orion Veil shell

The active outflows from *B-type stars in Orion* Nebula.

It is *challenging* to pinpoint the driving stars as they may have *moved* from the original ejection points of the jets/outflows.

Active outflows from B-type stars
 The linewidths indicate turbulence motions
 ~3% of the momentum that Veil has

Main Conclusions

- The Orion Veil may have already been pierced by the fossil outflows of θ¹ Ori C. Other less massive stars, especially *Btype*, made the Veil shell porous.
- 2. The momentum deposited *through protostellar feedback* in Orion is ~10% *of the momentum* that Veil shell has.
- 3. The fossil outflows of massive protostars can influence the *morphology of the future HII region* and even *cause punches* through the bubble and will release the hot plasma.
- 4. Mechanical feedback from protostars, or *pre-stellar feedback*, with a range of masses appears to play an important role injecting turbulence into the interstellar medium.
- 5. The *velocity-resolved SOFIA* [*CII*] *line observations* are *crucial* for investigating the protostellar and main sequence feedback in the ISM.

Stellar winds from IRS-6 created expanding bubble(s) in NGC7538 (Beuther+22)

A dent inside NGC7538 created by IRS-1's outflow (proposed by Sandell+20)

Back-up Slides

Stellar feedback is a matter of timescales and energy.

Which mechanism is the most effective and how long does it take?

NGC 7538 - [CII] 158 micron PV movie

NGC 7538 RGB map - 1

12CO21 emission is associated with north-east portion of NGC 7538.

PV diagrams show that northeast portion is fragmented.

