Characterizing Magnetic Fields's Role in Fueling Seyfert Nuclei With SOFIA/HAWC+, Velocity Gradient, and VLA

> Speaker: Yue Hu Date: 03/22/2023 SOFIA Tel-Talk

Global view of our galaxy

Milky Way

The formation of galactic nucleus and SMBH

How does orbiting gas lose angular momentum?

is conserved,

External force is required to remove angular momentum

How does orbiting gas lose angular momentum?

Friction Gravity Centrifugal Force Bars within bars: a mechanism for fuelling active galactic nuclei

Isaac Shlosman*, Juhan Frank† & Mitchell C. Begelman‡

Gravitational perturbation

Norman and Silk 1983; Norman and Scoville 1988; Lin et al 1988; Lubow 1988.

Blandford, R. D. (1988)

Bars within bars

Shlosman et al. 1989

Magnetic tension could provide strong torque

NGC 1068 SOFIA/HAWC+ (Far-infrared) Lopez-Rodriguez et al. (2020)

M51 VLA (radio) Fletcher et al. (2011)

Magnetic field is pervasive in galaxy

The best candidate: magnetic field

SALSA: SOFIA legacy program

Lopez-Rodriguez et al. (2022b)

Yue Hu @ University of Wisconsin-Madison

-3.25

Numerical results

Typical polarization methods for measuring B-field

The nature of MHD turbulence

Hydro turbulence

interaction of isotropic eddies

MHD turbulence

interaction of **anisotropic** wave packets moving with Alfven velocity

$$V_A = B_0 (4\pi \rho_o)^{-1/2}$$

Anisotropy of MHD turbulence

Anisotropy in Taurus

Anisotropy in two-fluid simulation

B-field

ions and neutrals are coupled via collision

Hu et al. (2023), submitted

Velocity gradients trace turbulent magnetic fields

MHD simulation, Hu et al. (2020)

Lazarian & Yuen (2018) Hu et al. (2018)

Goldreich & Sridhar (1995)

Obtaining velocity information from spectroscopic observation

(*x*, *y*, *z*) space

Velocity effect creates anisotropic intensity structures in (x, y, v) space

Lazarian & Pogosyan (2000)

Simulating spectroscopic line with constant density

3D MHD turbulence simulation ($M_S = 11.0, M_A = 0.8$) Constant density field $\rho(x, y, z) = 1$

Thin channel is dominated by velocity fluctuations

Peak of local gradient distribution ---> Predicted B-field

Magnetic field in the CMZ: agreement with dust polarization

Magnetic field around the Sgr A*

Hu, Lazarian & Wang 2021

High - temperature dust around the Sgr A*

Velocity field in galaxy in complicated

Criteria to use velocity gradient

Turbulence dominates $\leq 100 \text{ pc}$

Criteria for velocity gradients

Spatial resolution:

Turbulence scale 100 pc is resolved

Turbulence dominates over shear

Velocity resolution:

Higher than the turbulent velocity 10 km/s

Turbulence dominantly sharpens intensity structures in spectroscopic channel

Ha et al. (2022)

Magnetic field in the M51: agreement with SOFIA/HAWC polarization

Velocity gradient technique (VGT)

PAWS CO emissions for M51:

beam resolution ~ 37 pc

Velocity resolution $\sim 5 \text{ km/s}$

 $AM = \cos(2\theta)$

 θ : relative angle between two vectors AM = 1: parallel AM = -1: perpendicular

Hu et al. (2022)

ALMA and VLA resolve nearby galaxies < 100 pc

B-field survey of nearby galaxies

Dynamics in NGC 1097: VGT, HAWC+, VLA

B-field helps with fueling of Seyfert activity

Hu et al. (2022)

Kim & Stone (2012)

MHD simulation of barred galaxy

B-field torques remove angular momentum

Warm and cold gas are feeding the central SMBH

Disagreements in NGC 3627

Disagreements reveal magnetic fields in different collision stages

NGC 3627: a galaxy-dwarf collision?*

M. Weżgowiec¹, M. Soida², and D. J. Bomans¹

¹ Astronomisches Institut der Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany e-mail: mawez@astro.rub.de

² Obserwatorium Astronomiczne Uniwersytetu Jagiellońskiego, ul. Orla 171, 30-244 Kraków, Poland

Collision with NGC 3628: ~ 800 Myr

Dust forming time scale > CO forming time scale > CRs cooling time ~ 10 Myr

HAWC+: pre-collision B-field

VGT-CO: the mixture of pre-collision and post-collision B-fields

VLA: post-collision B-field

More galaxies are ready for exploration

SALSA: SOFIA legacy program

Lopez-Rodriguez et al. (2022b)

Yue Hu @ University of Wisconsin-Madison