SOFIA School 2023

Far-IR dust polarization observations: HAWC+ and the magnetic field in the ISM

Data Analysis techniques

Valentin Le Gouellec NPP (NASA Ames) valentin.j.legouellec@nasa.gov

Introduction to HAWC+ observations

Band/ Wavelength	Δλ	Angular Resolution	Total Intensity FOV (arcmin)	Polarization FOV (arcmin)
A / 53 μm	8.70	4.85" FWHM	2.8 x 1.7	1.4 x 1.7
Bª / 63 μm	8.90	10.5" FWHM	4.2 x 2.7	2.1 x 2.7
C / 89 µm	17.00	7.8" FWHM	4.2 x 2.7	2.1 x 2.7
D / 154 µm	34.00	13.6" FWHM	7.4 x 4.6	3.7 x 4.6
E / 214 µm	44.00	18.2" FWHM	8.4 x 6.2	4.2 x 6.2

Instrument Parameters for Bands A–E

Pipeline products: Full Stokes parameters maps (I, Q, U, V), and full covariance matrix.

HAWC+ instrument on board of SOFIA

The origin of the FIR polarized dust emission

The polarization fraction results from an integration along the line-of-sight (LOS),...

... and is thus sensitive to distribution of the grain characteristics, grain (external and internal) alignment efficiency, alignment axis organization, along the LOS

Outline

Introduction to HAWC+ polarization observations

With HAWC+ polarization data we can ...

1. Study the magnetic fields in the ISM with ...

- the DCF method ; Davis (1951) and Chandrasekhar and Fermi (1953)
- the ADF method ; Hildebrand+2009, Houde+2009, Houde+2016
- the density gradients method ; Soler (2013)
- velocity structures and gradients
- multiscale magnetic field observations
- the polarization fraction and the dispersion of polarization angles
- the velocity gradients method ; González-Casanova & Lazarian (2017)
- the KTH method ; Koch (2012)

2. Study interstellar dust characteristics and grain alignment with ...

- models of grain alignment
- evolution of polarization with local physical conditions
- polarization fraction spectra
- dust evolution models
- polarization radiative transfer

Part 1.

Studying magnetic fields in the ISM with SOFIA HAWC+ polarization observations

Assumption of an equipartition between the transverse turbulent magnetic and kinetic energies (Alvén relation):

Davis (1951) and Chandrasekhar and Fermi (1953)

the DCF method

$$\frac{1}{2}\rho\delta v_{\perp}^{2}=\frac{\left(B_{\perp}^{t}\right)^{2}}{2\mu_{0}},$$

B_{tot} B₀

caveats/assumptions:

- What about compressible modes ?
- Orientation of B₀ with the plane of the sky
- sub- vs super-alfvenic domains
- Isotropic turbulence ?
- Integration in the line-of-sight, beam averaging, filtering of the large-scale component

If $B_{t\perp}^{POS} / B_0^{POS} << 1$, then $B_{t\perp}^{POS} / B_0^{POS} \sim \delta \varphi^{POS}$, the dispersion of position angles.

$$B_{tot}^{POS} \sim \sqrt{4 \rho \pi} (\delta v_{NT}^{LOS} / \delta \phi^{POS})$$

The validity of the classic DCF method in strongly sub-alvénic self-gravitating regions is questionable.

See recent work by Liu+2022a,b, Chen+2022

the DCF method

Davis (1951) and Chandrasekhar and Fermi (1953)

Considering compressible modes, Skalidis & Tassis 2021 proposed:

$$\mathbf{B}_{tot}^{POS} \sim \sqrt{2 \rho \pi} (\delta \mathbf{v}_{NT}^{LOS} / \sqrt{\delta \phi^{POS}})$$

Fig. 1. Polarization angle dispersion as a function of the Alfvénic Mach number. Blue line: ST scaling; magenta line: DCF scaling. The two lines are normalized so that they pass through the data for $M_A = 1.0$.

Comparing magnetic field measurements done with Zeeman detections against DCF estimations:

Overestimation of the B-field with the DCF method ?

The Angular Dispersion Function (ADF):

analyzing the structure function of magnetic field position angles as a function of the spatial scales,...

Can take into account the large-scale field structure and small-scale, beam-integrated turbulence, and the effects of filtering

the ADF method

Hildebrand+2009, Houde+2009, Houde+2016

$$B_{\rm POS} \simeq \sqrt{4\pi\rho} \,\sigma_{\nu} \left[\frac{\langle B_t^2 \rangle}{\langle B_0^2 \rangle} \right]^{-1/2}$$

The fit of the function $1 - \langle \cos[\Delta \phi(\ell)] \rangle$ as a function of the POS spatial scale ℓ constrains $\frac{\langle B_t^2 \rangle}{\langle B_0^2 \rangle}$

See also works by Pillai+2015, Pattle+2017, and the recent Differential Measure Approach by Lazarian+2022.

Example in the Orion KL region

the ADF method

Generally, HAWC+ polarization observation resolve the typical scales of local star forming clouds structures ($\sim 0.01 - 0.1 \text{ pc}$)

Hildebrand+2009, Houde+2009, Houde+2016

In fine, one can study B - n relation, compare magnetic field and turbulence, calculate the mass-to-fluxratio to critical value, the virial state of dense structures, etc...

Soler+2019

 $\beta_0 = 100$

= 1.0

= 0.1

6.5

5.0

 $\log_{10}(n/cm^{-3})$

5.5

SOFIA regime in

6.0

observations of SFRs.

The example of Serpens South, a local hubfilament system harboring low-mass star forming cores

velocity structures and gradients

RA (J2000.0)

A clear velocity gradient along the

Sugitani+2011, Kirk+2013

Studying magnetic fields in the ISM with ... The example of Serpens South. velocity structures and gradients

SOFIA revealed a transition of magnetic field orientation toward the main filament. The magnetic field gets re-oriented toward the direction of major anisotropic infall.

Funneling matter to the main hub

Pillai+2020

Studying magnetic fields in the ISM with ... multiscale polarization observations

L483 Class 0 protostellar core Large-scale (10 000 au): Starlight polarization Intermediate-scale (5000 au): 350 microns SHARP Small-scale (1000 au): 154 microns SOFIA

-4°38'00" 20 15 10 Surface Brightness (MJy/sr) 39'00" Dec (J2000) 40'00" 41'00" -5000 au 27⁵ 18ⁿ17^m36^s 33^s 30^s 24^s RA (J2000)

Evolution of the magnetic field morphology with scale in the protostellar binary system L483

HAWC+ and ALMA polarization observations of the BYF 73 high-mass star forming dense core

Cox+2022

Studying magnetic fields in the ISM with ... the polarization fraction and polarization dispersion angle

Dispersion of polarization angle

disorganized component of the B-field in the plane of the sky

Polarization fraction

Grain alignment efficiency + disorganized component of the B-field in the line of sight

$$\left(\mathcal{S} \left(\delta \right) \right)_{\mathcal{P}_{\text{frac}}} \approx \frac{f_{\text{m}}(\delta)}{\sqrt{6N}} \frac{\mathcal{P}_{\text{frac},\text{max}}}{\mathcal{P}_{\text{frac}}} ,$$

The 3D magnetic field structure governs the correlation between S and P_{frac}

Planck 2020

Studying magnetic fields in the ISM with ... the polarization fraction and polarization dispersion angle

The 3D magnetic field structure governs the correlation between S and P_{frac}

Combining ALMA data of protostellar cores, Le Gouellec + 2020

Studying magnetic fields in the ISM with ... the polarization fraction and polarization dispersion angle

The 3D magnetic field structure govern the correlation between S and P_{frac}

The P_{frac} – *S* correlation is also sensitive to the orientation of the magnetic field with respect to the line-of-sight.

Comparing B_{LOS} (Zeeman detections) / B_{POS} (ADF with HAWC+ data) versus *S*, in Orion-KL (Guerra+2021)

Evolution of the P_{frac} – S correlation with the orientation of the mean B-field with the LOS in MHD simulations (Sullivan+2021)

Studying magnetic fields in the ISM with ... the velocity gradients method

González-Casanova & Lazarian (2017)

For further explanations see Yen & Lazarian 2017, Lazarian & Yuen 2018, Hu+2018, Hu+2021

Method: - Building PPV datacube

(and transition must coincide)

VGs departing from being

indicates gravitational collapse

the KTH method

Koch+2012

Assumptions: - negligible viscosity

- infinite conductivity (ideal MHD)
- isotropic magnetic field pressure
- small turbulent-to-ordered field strength ratio
- small variation of B-field strength
- stationarity
- Stokes I gradient = direction of motions

Then, the local B-field strength can be expressed with:

$$B = \sqrt{\frac{\sin\psi}{\sin\alpha}} \left(\nabla P + \rho \nabla \phi\right) 4\pi R,$$

(valid in strong field case --- negligible turbulence)

Method to be investigated in SOFIA data ! (see examples in Koch+2018, Liu+2020, Añez-López+2020)

Part 2.

Study interstellar dust characteristics and grain alignment

Study interstellar dust characteristics and grain alignment with ... grain alignment models

What grain alignment mechanisms?

> B-RATs : alignment of grains with the magnetic field via Radiative Alignment Torques (RATs)

- Size
- Shape
- Composition

Dolginov & Mitranov 1976, Draine+1996, Draine+1997, Lazarian & Hoang 2007

What we assumed so far in this presentation!

Study interstellar dust characteristics and grain alignment with ... grain alignment models

What grain alignment mechanisms?

- > B-RATs : alignment of grains with the magnetic field via Radiative Alignment Torques (RATs)
- > k-RATs : alignment of grains with the radiation field via Radiative Alignment Torques (RATs)

radiation field direction in irradiated region

Study interstellar dust characteristics and grain alignment with ... grain alignment models

What grain alignment mechanisms?

- > B-RATs : alignment of grains with the magnetic field via Radiative Alignment Torques (RATs)
- > k-RATs : alignment of grains with the radiation field via Radiative Alignment Torques (RATs)
- MATs: alignment of grains with the gas flow or the magnetic field via Mechanical Alignment Torques (MATs)

Challenge between the precession around \vec{B} or around the direction of the gas-dust drift

FIR to (sub)millimeter dust thermal emission

Gas flow interacting with dust grains

Linear polarization orthogonal to the anisotropic gas-dust drift of the magnetic field

Magnetic field lines

Possible to investigate in region with high gas-dust drift like AGB envelopes

Lazarian & Hoang 2007, Hoang+2018, Reissl+2022

Study interstellar dust characteristics and grain alignment with ...

the evolution of polarization with local physical conditions

Tram+2021

Study interstellar du:

the evolution of polarization with local physical conditions

RAT theory predict the grain alignment efficiency to increase with the dust temperature ...

Radiative Torque Disruption theory: disruption of the largest aligned grains if the grain rotation speed exceeds the grain cohesion strength

Hoang+2019, Lee+2019, Hoang+2020, Tram+2021

42

Study interstellar dust characteristics and grain alignment with ... Constraining models of polarization fraction spectra

Study interstellar dust characteristics and grain alignment with ... polarization fraction spectra

Polarization fraction spectra of massive clouds Vaillancour+2012

- HAWC+ multiwavelength polarization of archival data allows such science
- Synergies with current and future instruments : ALMA, JCMT POL2, IRAM30m NIKA2pol, LMT Toltec,

Polarization fraction spectra of nearby galaxies, HAWC+ 4 bands data, Lopez-Rodriguez+2022

Study interstellar dust characteristics and grain alignment with ... dust evolution models Destruction Dust formation Diverse processing Growth (PDRs, HII regions) (AGB) (ISM) (molecular clouds) Increasing extinction A_v **Dust evolutionary track** Increasing of the radiation field wavelength 10⁰ efficiency $A_v = 0$ 101 10-1 P (%) 10⁻² Radiative torques Aligned dust grains North slope = 1.3 ± 0.09 10⁻³ I Center $slope = 1.61 \pm 0.09$ 100 South $slope = 1.03 \pm 0.08$ 10^{-4} numerical, MMP83 10^{-1} 2×10^{-1} 3×10^{-1} $a_{\text{align}}(\mu m)$ numerical, reddening law a_{align} = minimum size of aligned grains $8(\overline{\lambda}/a)^{-3}$ 10 10^{-1} 10^{-2} 10^{0} 10^{1}

Hoang + 2020

Grain size (µm)

Grain growth in an Infrared dark cloud with HAWC+ data

Study interstellar dust characteristics and grain alignment with ... polarization radiative transfer **Polarization Radiative Transfer Code**

POLARIS

... onto MHD simulation

0.2

 $0.0 + 10^{-3}$

Normalized column density

 10^{-1}

 10^{0}

 10^{-2}

SOFIA HAWC+ data, and others...

Reissl+2016, Le Gouellec+2020, Chau Giang+2023 See also Li, P.-S.+2021.2022

Fin