

The analysis of high spectral resolution observations in the far-infrared

With a focus on the interstellar medium (ISM)

L. Bonne (lbonne@usra.edu)

SOFIA Infrared School

April 21st 2023

Outline

ØShort overview: high-resolution spectroscopy in the far-infrared

ØISM studies: far-infrared spectra

• Dynamics, chemical abundances and excitation conditions

 \triangleright ISM studies: far-infrared spectral data cubes

- Visualizing and quantifying the data
- Segmenting the data for analysis

Far-infrared astronomy

 \blacktriangleright Far-infrared astronomy: 30 – 300 (or 450) µm

ØObserve from space or at least in the stratosphere

• Mostly water absorption in the atmosphere (also $CO₂$ contribution)

Spectral lines in the far-infrared

ØFar-infrared spectral lines contain a lot of information

• Dynamics, excitation conditions, chemical abundances,…

ØSpectral lines:

- \triangleright H₂O (proto-planetary disks, atmospheres)
- \triangleright [CII] (galaxies, ISM)
- \blacktriangleright HD (proto-planetary disks)
- \geq CO (shocks, galaxies, ISM)

 \triangleright [NII], [OI], [OIII], HeH⁺, H₂D⁺, OH, CH,...

Far-infrared spectroscopy (history)

ØISO - LWS (1995-1998)

• Spectral resolution: ~10 km s⁻¹ (Swinyard et al. 1998)

ØHerschel - HIFI (2009-2013)

• Spectral resolution: ~0.1 km s⁻¹ (de Graauw et al. 2010)

ØSOFIA - (up)GREAT/4GREAT (2010-2022)

• Spectral resolution: ~0.1 km s⁻¹ (Heyminck et al. 2012; Risacher et al. 2016; Duran et al. 2021)

The up/4GREAT receiver

ØHeterodyne far-infrared receivers

- upGREAT: 2-band receiver, 7 pixels
- 4GREAT: 4-band receiver, 1 pixel

ØData reduction

• see talk R. Higgins (up next)

GREAT Configurations

Far-infrared spectroscopy (the

ØStratospheric balloon missions

- [GUSTO \(2023-2024: see e.g](http://archives.esac.esa.int/hsa/whsa/). Goldsmith et al. 2022)
	- [NII] @ 205 μ m, [CII] @ 158 μ m and [OI] @ 63 μ m
- ASTHROS (2024-2025: see e.g. Pineda et al. 2022)
	- Includes [NII] ω 205 µm and 122 µm, and HD ω 112 µn
- Probe mission in 2030-2040?

ØHerschel & SOFIA archive

http://archives.esac.esa.int/hsa/whsa/ https://irsa.ipac.caltech.edu/applications/sofia/?__action=layout.showDropDown&

Units

 \triangleright ['Brightness temperature –](https://science.nrao.edu/facilities/vla/proposing/TBconv) T (K)' or '(milli/meg

• [As in submillimeter and radio astronomy](https://www.atnf.csiro.au/research/radio-school/2011/talks/Parkes-school-Fundamental-II.pdf)

 \triangleright Flux density (S): 1 Jy = 10⁻²⁶ W m⁻² Hz⁻¹

 \triangleright Brightness temperature: $T =$

• Rayleigh-Jeans law

https://science.nrao.edu/facilities/vla/proposing/TBconv https://www.atnf.csiro.au/research/radio-school/2011/talks/Parkes-school-Fundam

 λ^2

 \overline{S}

 0.1

 T_{mb} 005

 $2 k\Omega$

The cycle of matter in galaxies

The [CII] fine structure line

\triangleright The ionization potential of carbon is 11.3 eV

- Can trace neutral regions in the ISM (< 13.6 eV)
- Fine-structure line emits at 158 µm ([CII])

\triangleright Dominant cooling line in the neutral ISM

- [CII] mostly originates from photodissociation regions (PDRs) (e.g. Pineda et al. 2013; Tarantino et al. 2021)
- PDRs: see talks M. Wolfire, J. Sutter

Spectral features

Ø(Self/foreground-)absorption + emission

- Spectra modelled with XCLASS (Möller et al. 2017)
- Automated fitting routine: MAGIX (Möller et al. 2013)

ØXCLASS: A tool for CASA

https://casa.nrao.edu/

- Models spectral lines by solving the radiative transfer equation assuming LTE
- Spectroscopic data from CDMS & JPL

Abundances in the ISM

12

Dynamics in the ISM

\triangleright Expansion and infall in massive star forming cl

 $NH₃$ [absorption shift relat](https://www.iram.fr/IRAMFR/GILDAS/doc/html/class-html/class.html)ive to the centroid veloc

ØFitting with CLASS

- A GILDAS package
- Can be coupled to Python

≻GILDAS: see talk R. Higgins

https://www.iram.fr/IRAMFR/GILDAS/ doc/html/class-html/class.html

Dynamics in the ISM

ØEmission: unveils previously unseen dynamics

- Which gas phase does it trace?
- Implications for ISM evolution?

14

DR21: Bonne et al. in review; Schneider

Self-absorption

≻Self-absorption in [CII]

- Identified with [13CII]
- Origin of this self-absorption?

ØFit with a multi-layer model (see Guevara et al. 2020; Kabanovic et al. 2022)

- Warm & cold layers of gas at different velocities
- Also applicable to CO observations (Bonne et al. 2020)

ØAlso seen in [OI] @ 63 µm (e.g. Goldsmith et al. 2021)

• Best identified with [OI] @ 145 µm

PDR modeling

Dec(2000)

ØPDR analysis at high spectral resolution

• Can provide 3D information

ØKOSMA-tau models (Stoerzer et al. 1996; Roellig et al. 2006)

• Available in the PDR Toolbox (see talk M. Pound)

 $\rm [CII]_{158\,\mu m}/[OII_{63\,\mu m}$

PDR modeling

Fhere are a wide variety of PDR codes (Roellig et al.

- PDR Toolbox (Pound & Wolfire 2008; 2023)
- [Meudon](https://pdr.obspm.fr/) PDR (Le Petit et al. 2006; Le Bourlot et al 2012)
- CLOUDY (Ferland et al. 1998; 2017)
- …

ØMeudon code

- Online model fitting (on the ISMDB)
- ISMDB: also hosts shock code

https://pdr.obspm.fr/

Spectral data cubes

\triangleright A lot of information in a single spectrum

• Spectral cubes: up to millions of ([CII]) spectra

18

A 3D view of the spectral cube

\triangleright Isosurface plots with plotly in Python https:/

- A relatively simple way to visualize the 3D cube
- In Cygnus-X/DR21: unveils colliding flows forming

Position-velocity (PV) diagrams

\triangleright Extract velocity information along one axis

- Function in astropy: pvextractor
- X-ray & radio/optical data: stellar wind driven?

 V_{LSR}

Moment maps

 \triangleright Gives a perspective on the global velocity field

- Remarkable change in linewidth across the DR21 r
- Use 'SpectralCube' package in Astropy
- Be aware of S/N (see e.g. Teague et al. 2019)

moment moment moment

https://spectral-d

RA [J2000]

Synergy with the magnetic field observations

 \triangleright Provides more comprehensive view of the ISM evolution

• Determine the magnetic field strength (see talk V. Le Gouellec)

Multi-Gaussian fitting

\triangleright Extract more information from the spectra

ØDon't reinvent the wheel

- Beyond The Spectrum (BTS) (Clarke et al. 2018)
	- Fully automated
- Scouse(Py) (Henshaw et al. 2016; 2019)
	- Semi-automated
	- Hierarchical approach
	- Also exists in IDL

 \bullet …

intensity).

0.5

Stages $3 \& 4$: Fitting the individual spectra using output parameters from stage 2 as free-parameter inputs, and selecting the "best-fits" to each spectrum.

 0.0

Stage 2: Fitting the spatially-averaged spectrum associated with each SAA.

 $GL(N(\text{deg}))$

Multi-Gaussian fitting

\triangleright Dynamic features associated with multiple components

• Need to be careful: self-absorption

Results from BTS (Bonne et al. in review) Magenta: regions with two velocity components -1.5 42°30' $42°30'$ 3.5 -2.0 3.0 -2.5 DEC [J2000]
25
. **DEC** [J2000] 2.5 o (km $25'$ (km -3.0 2.0 -3.5 1.5 20° 20° -4.0 -1.0 4.5 $20^{h}39^{m}20^{s}$ 20h39m20s 00^s 38m40s 00^s 38^m40^s RA [J2000] RA [J2000]

PDR analysis of far-infrared maps

\triangleright Fit pixel-by-pixel fitting

- Kosma-tau (e.g. Okada et al. 2019)
- PDR Toolbox (see talk M. Pound)

\triangleright Maps the (best fitting) excitation conditions

• Using: [CII], [OI], [CI] & CO lines

Segmenting data cubes: spatial

≻Dendrograms: hierarchical structure (Rosolowsky et

- Astrodendro package in Python https://dendrograms.read
- Also applicable to PPV
- Basis for: e.g. SCIMES (Colombo et al. 2015), Acorns (Hensha

Adapted from: https://dendrograms.readthedocs.io/en/stable/

Segmenting data cubes: spatially

\triangleright Can analyze the different structures

- [CII] self-absorption
- Due to the cold atomic halo?

Segmenting data cubes: spectrally

 \triangleright Segment map based on the spectra

ØGaussian Mixture Model (GMM)

• Unsupervised machine learning (see Kabanovic et al. 2022)

Conclusion

\triangleright Provides a unique view (on the ISM)

• Work is only starting

ØHigh spectral resolution provides detailed information

- Dynamics
- Chemical abundances
- Excitation conditions

\triangleright Several analysis tools are already available