

The analysis of high spectral resolution observations in the far-infrared

With a focus on the interstellar medium (ISM)

L. Bonne (Ibonne@usra.edu)

SOFIA Infrared School

April 21st 2023

Outline

Short overview: high-resolution spectroscopy in the far-infrared

➢ISM studies: far-infrared spectra

• Dynamics, chemical abundances and excitation conditions

➢ISM studies: far-infrared spectral data cubes

- Visualizing and quantifying the data
- Segmenting the data for analysis

Far-infrared astronomy

Far-infrared astronomy: 30 – 300 (or 450) μm

Observe from space or at least in the stratosphere

• Mostly water absorption in the atmosphere (also CO₂ contribution)

Spectral lines in the far-infrared

➢ Far-infrared spectral lines contain a lot of information

• Dynamics, excitation conditions, chemical abundances,...

➤Spectral lines:

- >H₂O (proto-planetary disks, atmospheres)
- ➢[CII] (galaxies, ISM)
- ➢HD (proto-planetary disks)
- ➤CO (shocks, galaxies, ISM)

➢ [NII], [OI], [OIII], HeH⁺, H₂D⁺, OH, CH,...

Far-infrared spectroscopy (history)

≻ISO - LWS (1995-1998)

• Spectral resolution: ~10 km s⁻¹ (Swinyard et al. 1998)

>Herschel - HIFI (2009-2013)

• Spectral resolution: ~0.1 km s⁻¹ (de Graauw et al. 2010)

>SOFIA - (up)GREAT/4GREAT (2010-2022)

• Spectral resolution: ~0.1 km s⁻¹ (Heyminck et al. 2012; Risacher et al. 2016; Duran et al. 2021)

The up/4GREAT receiver

Heterodyne far-infrared receivers

- upGREAT: 2-band receiver, 7 pixels
- 4GREAT: 4-band receiver, 1 pixel

➢ Data reduction

• see talk R. Higgins (up next)

Front-End	Frequencies (GHz)	Lines of Interest	DSB ⁶ Receiver Temperatures (K)	Main beam efficiencies
HFA ¹	4744.77749	[OI] 63 µm	1250	0.63
LFAH ²	1835–2007	[СІІ] 158 µm, CO, ОН, ² П _{1/2} , ¹² CH, ¹³ CH	1000	0.69
LFAV ²	1835–2007 2060–2065	Same as LFAH, plus [OI] 145 μm		
4G4	2490–2590	ОН ² П _{3/2} , ¹⁸ ОН ² П _{3/2}	3300	0.57
4G3	1240–1395 1427–1525	[NII] 205 μm, CO, OD, HCN, SH, H ₂ D ⁺	1100	0.70
4G2 ^{3,4}	890–984 990–1092	CO, CS	> 600 300	0.59
4G1 ⁴	491–555 560–635	NH ₃ , [Cl] 609 μm, CO, CH	< 150	0.51

GREAT Configurations

Far-infrared spectroscopy (the future)

Stratospheric balloon missions

- GUSTO (2023-2024: see e.g. Goldsmith et al. 2022)
 - [NII] @ 205 μm , [CII] @ 158 μm and [OI] @ 63 μm
- ASTHROS (2024-2025: see e.g. Pineda et al. 2022)
 - Includes [NII] @ 205 μm and 122 $\mu m,$ and HD @ 112 μm
- Probe mission in 2030-2040?

Herschel & SOFIA archive

http://archives.esac.esa.int/hsa/whsa/

https://irsa.ipac.caltech.edu/applications/sofia/? action=layout.showDropDown&

Units

'Brightness temperature – T (K)' or '(milli/mega-)Jansky – (m/M)Jy'

https://www.atnf.csiro.au/research/radio-school/2011/talks/Parkes-school-Fundamental-II.pdf

The cycle of matter in galaxies

The [CII] fine structure line

The ionization potential of carbon is 11.3 eV

- Can trace neutral regions in the ISM (< 13.6 eV)
- Fine-structure line emits at 158 μm ([CII])

Dominant cooling line in the neutral ISM

- [CII] mostly originates from photodissociation regions (PDRs) (e.g. Pineda et al. 2013; Tarantino et al. 2021)
- PDRs: see talks M. Wolfire, J. Sutter

Spectral features

>(Self/foreground-)absorption + emission

- Spectra modelled with XCLASS (Möller et al. 2017)
- Automated fitting routine: MAGIX (Möller et al. 2013)

>XCLASS: A tool for CASA

https://casa.nrao.edu/

- Models spectral lines by solving the radiative transfer equation assuming LTE
- Spectroscopic data from CDMS & JPL

Abundances in the ISM

Dynamics in the ISM

Expansion and infall in massive star forming clumps (Wyrowski et al. 2012; 2016)

• NH₃ absorption shift relative to the centroid velocity of C¹⁷O(3-2)

► Fitting with CLASS

- A GILDAS package
- Can be coupled to Python

► GILDAS: see talk R. Higgins

https://www.iram.fr/IRAMFR/GILDAS/ doc/html/class-html/class.html

Dynamics in the ISM

Emission: unveils previously unseen dynamics

- Which gas phase does it trace?
- Implications for ISM evolution?

14

DR21: Bonne et al. in review; Schneider

Self-absorption

➢Self-absorption in [CII]

- Identified with [¹³CII]
- Origin of this self-absorption?

Fit with a multi-layer model (see Guevara et al. 2020; Kabanovic et al. 2022)

- Warm & cold layers of gas at different velocities
- Also applicable to CO observations (Bonne et al. 2020)

 \rightarrow Also seen in [OI] @ 63 μ m (e.g. Goldsmith et al. 2021)

- Best identified with [OI] @ 145 μm

PDR modeling

Dec(2000)

➢PDR analysis at high spectral resolution

• Can provide 3D information

KOSMA-tau models (Stoerzer et al. 1996; Roellig et al. 2006)

• Available in the PDR Toolbox (see talk M. Pound)

CII]_{158 µm}/[OI]_{63 µm}

PDR modeling

There are a wide variety of PDR codes (Roellig et al. 2007)

chi front (ISRF)

102

10³

105

nH (cm-3)

107

10⁹

- PDR Toolbox (Pound & Wolfire 2008; 2023)
- Meudon PDR (Le Petit et al. 2006; Le Bourlot et al 2012)
- CLOUDY (Ferland et al. 1998; 2017)

Meudon code

. . .

- Online model fitting (on the ISMDB)
- ISMDB: also hosts shock code

https://pdr.obspm.fr/

17

1.35e-17

Spectral data cubes

> A lot of information in a single spectrum

• Spectral cubes: up to millions of ([CII]) spectra

18

A 3D view of the spectral cube

Isosurface plots with plotly in Python

https://plotly.com/python/3d-isosurface-plots/

- A relatively simple way to visualize the 3D cube
- In Cygnus-X/DR21: unveils colliding flows forming molecular clouds

Position-velocity (PV) diagrams

Extract velocity information along one axis

- Function in astropy: pvextractor
- X-ray & radio/optical data: stellar wind driven?

<u>https://pvextractor.readthedocs.io/en/latest/</u> <u>https://github.com/radio-astro-</u> <u>tools/pvextractor</u>

 $v_{LSR} = V_{cloud} + V_{exp}^* cos(bx)$ Mass: Goldsmith et al. (2012) + Sofia et al. (2004) N(C⁺) [C⁺]/[H]

20

Moment maps

Gives a perspective on the global velocity field and linewidth

- Remarkable change in linewidth across the DR21 ridge
- Use 'SpectralCube' package in Astropy
- Be aware of S/N (see e.g. Teague et al. 2019)

>>> moment_0 = cube.moment(order=0)
>>> moment_1 = cube.moment(order=1)
>>> moment_2 = cube.moment(order=2)

https://spectral-cube.readthedocs.io/en/latest/moments.html

- 3.5

3.0

2.5 σ (km s 2.0 s

1.5

1.0

Synergy with the magnetic field observations

Provides more comprehensive view of the ISM evolution

• Determine the magnetic field strength (see talk V. Le Gouellec)

Multi-Gaussian fitting

Extract more information from the spectra

Don't reinvent the wheel

- Beyond The Spectrum (BTS) (Clarke et al. 2018)
 - Fully automated
- Scouse(Py) (Henshaw et al. 2016; 2019)
 - Semi-automated
 - Hierarchical approach
 - Also exists in IDL

. . .

intensity)

Stages 3 & 4: Fitting the individual spectra using output parameters from stage 2 as free-parameter inputs, and selecting the "best-fits" to each spectrum.

0.5

0.0

Stage 2: Fitting the spatially-averaged

spectrum associated with each SAA

GLON (deg)

Multi-Gaussian fitting

Dynamic features associated with multiple components

• Need to be careful: self-absorption

PDR analysis of far-infrared maps

➢ Fit pixel-by-pixel fitting

- Kosma-tau (e.g. Okada et al. 2019)
- PDR Toolbox (see talk M. Pound)

Maps the (best fitting) excitation conditions

• Using: [CII], [OI], [CI] & CO lines

Segmenting data cubes: spatially

Dendrograms: hierarchical structure (Rosolowsky et al. 2008)

- Astrodendro package in Python https://dendrograms.readthedocs.io/en/stable/
- Also applicable to PPV
- Basis for: e.g. SCIMES (Colombo et al. 2015), Acorns (Henshaw et al. 2019)

Adapted from: https://dendrograms.readthedocs.io/en/stable/

Segmenting data cubes: spatially

➤Can analyze the different structures

- [CII] self-absorption
- Due to the cold atomic halo?

Segmenting data cubes: spectrally

Segment map based on the spectra

➢Gaussian Mixture Model (GMM)

• Unsupervised machine learning (see Kabanovic et al. 2022)

Conclusion

➢ Provides a unique view (on the ISM)

• Work is only starting

➢ High spectral resolution provides detailed information

- Dynamics
- Chemical abundances
- Excitation conditions

Several analysis tools are already available