High-resolution IR imaging spectroscopy of Mars with TEXES Perspectives with EXES

T. Encrenaz, B. Bézard, T. Fouchet,T. Greathouse, M. Richter, J. Lacy,F. Forget, S. Lebonnois, F. Lefèvre,S. Atreya, T. Owen

SCTF Telecon, January 20, 2010

Outline

- H₂O₂ mapping
- H₂O mapping
- Temperature mapping
- C and O isotopic ratios in CO₂
- Search for CH₄ -> upper limit
- Perspectives with EXES

The scientific case

- H₂O₂ has been searched for since Viking
- Very weak abundance expected (a few 10⁻⁸)
- Very high spectral resolution required -> TEXES well suited
- Results: IR detection, mapping and seasonal monitoring
- <u>By-products:</u>
 - H₂O mapping
 - Ts and T(P) mapping
 - C and O isotopic ratios in CO₂
 - Search for CH₄

Mars with TEXES: The data set

- Dates:
 - Feb. 2001, Ls = 110° (summer solstice)(N)
 - June 2003, Ls = 206° (mid-autumn)
 - December 2005, Ls = 332° (end winter)
 - May 2008, Ls =80° (summer solstice)
 - October 2009, Ls = 352° (equinox)
- Spectral range: 1230-1236 cm⁻¹,1237-1244 cm⁻¹ (8.04-8.13 mm) + 995-1005 cm⁻¹(10 mm)
- Spectral resolution: 0.016 cm⁻¹ (R = 7.7 10⁴)
- Spatial resolution (after convolution): 1.5x1.5 arcsec

The 1237-1243 cm⁻¹ spectrum of Mars (TEXES, IRTF) All lines identified down to depths of 0.3%

S/N > 1000 in the continuum

First IR detection of H_2O_2 on Mars H_2O_2 and CO_2 lines at 1241.6 cm⁻¹

H_2O_2 mapping on Mars, Ls = 207° : In agreement with GCM

 H_2O_2/CO_2 ratio (x 10⁻⁸)

TEXES $Q(H_2O_2)_{max} = 4 \ 10^{-8}$ GCM $Q(H_2O_2)_{max} = 4 \ 10^{-8}$

Ls = 332° : H₂O₂ weaker than expected

 H_2O_2/CO_2 line depth ratio TEXES Green: $H_2O_2 = 15$ ppb

Encrenaz et al. Icarus 2008

GCM/EMCD Red: $H_2O_2 = 32$ ppb

June 2008, Ls = 80° Marginal detection over the full disk $Q(H_2O_2) = 10 \text{ ppb}$

Black: TEXES data - Models: $Q(H_2O_2) = 5$ ppb, 10 ppb, 15 ppb

 $Ls = 80^{\circ} - June 2008$ $H_2O_2 \text{ weaker than GCM prediction}$ No evidence for the increase in the northern hemisphere predicted by the GCM

Seasonal variations of H₂O₂ on Mars: A better agreement is reached if heterogeneous chemistry is taken into account (Lefèvre et al. Nature 2008)

Water vapor mapping

- H_2O is mapped through a weak HDO transition (assuming $[D/H]_M = 5 [D/H]_E$.
- The H₂O mixing ratio is inferred from the line depth ratio of the HDO line and a nearby weak CO₂ line
- Results: Good agreement wth GCM for Ls = 80°, 110° and 206°; significant discrepancies for Ls = 332°
- At northern solstice (Ls = 80° and 110°): strong maximum at high northern latitudes, as expected from the GCM

H_2O mapping, Ls = 206°

- 1 line usable at 1240.0 cm-1, depth = 1.5%
- Comparison with CO_2 @ 1241.6 cm-1 -> H₂O mapping

H_2O on Mars - Ls = 206° Very good agreement with the GCM Encrenaz et al. Icarus 2005

TEXES
$$Q(H_2O)_{max}=3\ 10^{-4}$$

 H_2O/CO_2 ratio (x 10⁻⁴)

GCM Q(H₂O)_{max}=3 10⁻⁴

Radiance (normalized to continuum) 1.00 0.99 0.98 0.97 0.96 1236.25 1236.27 1236.29 1236.31 1236.33 Wavenumber (cm⁻¹)

 $[H_2O] = 150 \text{ ppm}$

Ls = 332° : H₂O weaker than GCM prediction + discrepancies in the spatial distribution (effect of dust?)

HDO/CO₂ line depth ratio TEXES Green: $H_2O = 150$ ppm

GCM/EMCD Red: $H_2O = 220$ ppm

Summer solstice - Ls = 110° Mean spectrum, 40NCO₂ and HDQ fits maximum, 65N

Models: $[H_2O] = 100 \rightarrow 750 \text{ ppm}$ Best fit: 40N: $[H_2O] = 250 \text{ ppm} (15 \text{ pr-}\mu\text{m})$ Models: $[H_2O] = 1000 \rightarrow 5000 \text{ ppm}$ -> $[H_2O] > 1000 \text{ ppm} (> 70 \text{ pr-}\mu\text{m})$

CO_2 and HDO fits - Ls = 80° (June 2008)

Ground-based water vapor mapping with TEXES May 31, 2008 - Ls = 80° Very good agreement with GCM predictions

-> No evidence from water adsorption from the regolith

Ts and T(P), Ls = 206°

- From continuum -> Ts map
- From weak and strong CO₂ lines
 Variations of T(P) in the lower atmosphere
- Comparison with GCM:
 - Ts OK except at the south pole (end of summer): implies a faster recession of the polar cap than expected in the GCM
 - T(P) OK with GCM: 30 K variation from morning to evening

Ts on Mars

Temp surface

TEXES

GCM

T(P) in the lower atmosphere (z = 5 - 20 km)

Ts and T(5km) on Mars

Ls=206, UT=20h

Temp surface

Temp (z=5)

TEXES-Ts

Ls = 332°: discrepancies in the surface temperature maps (effect of dust?)

Discrepancies in Ts also for $Ls = 80^{\circ}$

Encrenaz et al. A&A 2010, submitted

CO₂ isotopic ratios in Mars

- In H₂O: possible departure from terrestrial values:
 - ¹⁷O/¹⁶O=0.95 +/-0.01, ¹⁸O/¹⁶O=0.90+/-0.03;
 -> ¹⁷O/¹⁸O= 1.05+/- 0.04 (Bjoraker et al., 1989)
- In CO₂: departures from terrestrial values also reported in ¹²C/¹³C and ¹⁷O/¹⁸O by several percent (Krasnopolsky et al., 1996)
- From the present data: martian ratios are consistent with terrestrial values
 - $\frac{17}{0} = 0.97 + -0.06, \frac{18}{0} = 1.06 + -0.20$

 $- {}^{13}C/{}^{12}C = 1.00 + - 0.04$

The main limitation comes from the uncertainty in the CO₂ band strengths

The method

- Weak CO₂ lines (depth: about 1%)
 - 1230-1236 cm⁻¹: 628 (7 lines), 638 (7 lines)
 - 1237-1244 cm⁻¹: 637 (4 lines), 638 (3 lines)
 - 995-1005 cm⁻¹: 626 (1 line)
- ¹⁷O/¹⁸O, ¹⁸O/¹⁶O: 3 data sets (north, south, max)
- ¹³C/¹²C: 4 data sets (north, south, max+Feb.2001)
- Line-by-line comparison with synthetic model
 -> mean ratio per isotopic species
- Error: due to uncertainty in the continuum (10% per line)

The CO₂ isotopic band

The TEXES spectrum of Mars ($\Delta v=0.016 \text{ cm}^{-1}$)

Search for CH₄

- 2 lines used: 1238.7 cm⁻¹ & 1242.6 cm⁻¹
- No way to identify the lines (uncertainty on continuum in the wing of the terrestrial lines) > search for variations
- Result: no variation seen above 0.1% depth
- Implies CH₄ variations below about 40 ppb (20 ppb on morning side, 80 ppb on evening side)
- Consistent with previous determinations (sources seen by M. Mumma are outside the FOV or on the evening side)

 CH_4/CO_2

 CH_4

Perspectives with TEXES

Access to GEMINI

- > Improved spatial resolution
 Atreya et al. 2007: possible localized spots of H₂O₂

- Venus observations
 - $-H_2O$ and SO_2 mapping
 - Search for H_2O_2
 - In coordination with Venus Express observations (on-going debate about SO₂ distribution)

Perspectives with EXES

Mars

-Simultaneous access to HDO and H_2O lines -> D/H mapping and monitoring

- (presently assumed to be 5 x terrestrial)
- -Search for CH₄ (mapping capability)

-Other possible transitions (TBC):

HDO @ 7 μ m, H₂O @ 20-25 μ m (stronger transitions) SO₂ @7.3 μ m, H₂ @ 17 μ m, H₂CO@ 5.7 μ m, ...

Venus

-HDO and H₂O -> D/H (present debate) -SO₂ mapping (present debate)