Tracing the Origin of Methane and Water on Mars: The Role for SOFIA.

Michael J. Mumma NASA's Goddard Space Flight Center

G. L. Villanueva (CUA/GSFC) R. E. Novak (Iona College) T. Encrenaz (Observatoire de Paris) P. Hartogh (MPI for Solar System Research) A. Tokunaga (University of Hawaii) R. Campbell, A. Conrad, J. Lyke (Keck Observatory) U. Käufl, A. Smette (European Southern Observatory)

SOFIA - SCTF

17 February 2010

The Search for Mars methane

- The measurement approach
 - Improvements in Analysis
 - Our spectral detections
 - The current campaign
 - A Role for SOFIA

IRTF - CSHELL : shaded boxes (lots of observing time!)

Keck - NIRSPEC : Large Spectral & Spatial Grasp

Data taken on 06 January 2006 09:00 UT ($L_S = 352^\circ$)

Frequencies between 2700-3400 cm⁻¹ (3.7-2.9µm)

Methane on Mars Workshop on Mars Methane - Frascati

Maximum abundance Observed at $L_s 220^\circ$ (mid-spring in South) Maximum abundance Observed at L_s 155° (late summer in North) Methane on Mars

Mumma, Villanueva, Novak, et al. (Science 2009)

Resolution-limited Spatial Maps reveal local methane plumes on scales of 500 km. Is the release relatively uniform over these regions – or is it strongly localized?

Methane Issues

? Origins —

When was it produced ? (recent vs. ancient)
How was it produced ? (abiotic vs. biotic)
reduce carbon in mantle (CO₂, H₂O, heat)
release H₂ : serpentinization, pyrite production, H₂O radiolysis
microbes metabolize H₂, reduce CO, CO₂ or acetate to methane
How is it released? Is it seasonal?
thermal activation of near-surface? (supra-permafrost)
by opening pores /fractures in scarps ? (sub-permafrost)

? Sinks —

Atmospheric – triboelectric, photochemical, other? Sub-surface (oxidants) – peroxides, perchlorates Sequestering (adhesion, gettering)

? Re-charge Mechanism (if released annually)

Next steps –

✓ Spectroscopy

Higher spectral resolution (improve sensitivity, improve specificity) Larger spectral grasp detect additional trace species (C₂H₆, N₂O, H₂CO, OCS, etc.) simultaneity with CO₂ (obtain mixing ratios directly)

Next steps –

✓ Spectroscopy

Higher spectral resolution (improve sensitivity, improve specificity) Larger spectral grasp detect additional trace species (C₂H₆, N₂O, H₂CO, OCS, etc.) simultaneity with CO₂ (obtain mixing ratios directly)

✓ The SOFIA Niche

Extend CH₄ detections to 7.7 μm (v₄ band), with EXES simultaneity with CO₂ (obtain mixing ratios directly) improved orbital coverage (Mars year)
Detect additional trace species (H₂O,HDO,H₂S,CO,CH₃OH,H₂CO,etc.) measure line shapes => altitude distribution
Spatial resolution: 2" = 1200 km at 10 km/s (10" Mars)

Mars - Fully resolved spectrum 1.0 0.8 Transmittance 0.6 0.4 A Niche 0.2 0.0 **For SOFIA** 1340 1320 1300 1280 1260 Wavenumber [cm-1] Mauna-Kea Transmittance at 14,000 feet, Doppler = 10 km/s 1.0 0.5 Transmittance 0.0 -0.5 -1.0 1300 Wavenumber [cm-1] 1340 1320 1280 1260 SOFIA Transmittance at 42,000 feet, Doppler = 10 km/s 1.0 0.5 Transmittance 0.0 -0.5 -1.0 1340 1300 Wavenumber [cm-1] 1260 1320 1280

CH₄ CO₂ N₂O

• We want higher spectral resolution to improve detection sensitivity.

• We want higher spatial resolution to test source properties.

✓ Spectral Resolving Power:

\mathbf{C}	R	R	15	S	
N	R	S	P	E(С

λ/δλ ~100,000 λ/δλ ~ 40,000

slit: 0.2" x 30" slit: 0.027" x 2.26"

 ✓ Spatial resolution: Correct 'seeing' with Adaptive Optics (AO) CRIRES – UT1 PSF 0.104" 68 km on 10" Mars NIRSPEC – Keck 2 PSF 0.083" 56 km on 10" Mars

High Resolution Astronomical Spectroscopy today:

Methane on Mars

M. J. Mumma, G. L. Villanueva, R. E. Novak, et al

NIRSPEC echellograms (two settings); CSHELL grasp in shaded boxes. CRIRES grasp (single order) shown in yellow boxes (Detectors 3 & 4 shown).

Frequencies between 2700-3400 cm⁻¹ (3.7-2.9µm)

Current Campaign: Completed Runs – 2009B

Dates	Instrument	Mode	Diameter arc-sec	Velocity km/s	Season L _s
19 - 24 Aug	CRIRES	AO	5.6"	- 9.7	325°
05 -10 Sept	CRIRES	AO	6.0"	-10.6	334°
29 Oct - 1 Nov	CRIRES	AO	7.8"	-13.8	1.9°
6 – 7 Nov	CSHELL		8.2"	-13.8	5.4°
10 - 11 Nov	NIRSPEC	non-AO	8.5"	-13.8	7.3°
19 - 23 Nov	CRIRES	AO	9.2"	-13.9	11.7°
23 Nov	CSHELL		9.4"	-13.9	13.6°
25 Nov	CSHELL		9.4"	-13.9	14.5°
1 - 2 Dec	NIRSPEC	non-AO	10.0"	-13.5	17.4°
11 - 12 Dec	NIRSPEC	AO	10.8"	-12.6	22°
12 -15 Dec	CSHELL		11.0"	-12.3	23°
15 - 16 Dec	NIRSPEC	non – AO	11.1"	-12.2	24°

Current Campaign: Scheduled runs – 2010A

Dates	Instrument	Mode	Diameter	Velocity	Season
			arc-sec	km/s	L _s
27 - 28 March	CSHELL	_	9.6"	14.5	69°
29 March	NIRSPEC	non-AO	9.5"	14.6	70°
3 & 5 April	NIRSPEC	AO	9.0"	14.9	73°
13 - 14 April	CRIRES	AO	8.3"	15.3	77°
24 - 25 April	NIRSPEC	non-AO	7.6"	15.4	82°
27 April	NIRSPEC	non-AO	7.5"	15.4	83°
1 – 2 May	CRIRES	AO	7.25"	15.3	85°
6 - 7 May	CSHELL	—	7.0"	15.2	88°
12 - 13 May	CRIRES	AO	6.7"	15.0	90°
1 – 2 June	CRIRES	AO	6.0"	14.1	99°
8 - 9 June	CSHELL	_	5.7	13.7	102°

Methane on Mars M. J. Mumma, G. L. Villanueva, R. E. Novak, et al.

NASA

Preview :

CRIRES – VLT (Preliminary)

CRIRES on Mars - First night UT 19 August 2009 10:20

Methane on Mars M. J. Mumma, G. L. Villanueva, R. E. Novak, et al.

Mars Diameter 5.6 arcsec Geocentric velocity : -9.4 km/sec $L_s = 325^{\circ}$ mid NH winter

VLT Paranal:	
airmass	
PWV	
FWHM	
AO	

1.83.9 mm0.7 arcsecopen loop

CRIRES 0.2" slit, 0.086" pixels Centered on 285° W

CRIRES on Mars - First night UT 19 August 2009 10:20 Mars Diameter 5.6 arcsec $L_s = 325^\circ$ mid NH winter

M. J. Mumma, G. L. Villanueva, R. E. Novak, et al

Methane on Mars

CRIRES 0.2" slit, 0.086" pixels Centered on 285° W

Thermal Analysis – atmosphere and solid surface

CRIRES on Mars – Four runs Aug, Sept, Oct, Nov 2009

Methane on Mars M. J. Mumma, G. L. Villanueva, R. E. Novak, et al.

Methane on Mars

Mars Diameter : 5.6 to 9.2 arcsec Velocity : -9.4 to -13.9 km/sec $L_s: 325^{\circ} \text{ to } 11.7^{\circ}$

AO closed: 14 of 16 nights

Step-maps: CH₄, H₂O, HDO

Filled maps: CH₄, H₂O, HDO

CRIRES 0.2" slit, 0.086" pixels Centered on 285° W

Hellas Basin

NASA GISS Mars24 5.5 Methane on Mars M. J. Mumma, G. L. Villanueva, R. E. Novak, et al.

Preview :

NIRSPEC – Keck (Preliminary)

Status: AO on Mars with CRIRES and NIRSPEC

Problem # 1: AO was never demonstrated on Mars (issues: size & background)

Objective 1: Demonstrate AO on Mars (NGS mode) using NIRC2 ACHIEVED (June); additional tests (August, October, December)

Objective 2: Demonstrate AO on Mars using offset source as NGS Deimos (CRIRES & Keck-2 = FAILED; mirror scatter too bright)

SURPRISE SOLUTION: AO closed on Mars albedo feature (CRIRES - August)

Methane on Mars M. J. Mumma, G. L. Villanueva, R. E. Novak, et al.

NASA

END

March 20 & 21, 2003 $L_s = 155^\circ$ Northern summer

Methane on Mars

Workshop on Mars Methane - Frascati

Two independent lines of methane are detected, and they show the same latitudinal dependence

Methane on Mars

Mumma, Villanueva, Novak, et al. (Science 2009)

Additional Checks are satisfied :

The column abundances obtained from two independent lines of methane agree within errors. The mixing ratios obtained from two independent lines of methane agree within errors (right). A pronounced maximum in mixing ratio is seen over equatorial latitudes (right).

Two more methane lines are detected (the P2 doublet) during Southern spring (not shown).

Mumma, Villanueva, Novak, et al. (Science 2009)

The methane mixing ratios vary with longitude, latitude, and season The maximum in mixing ratio moves southward with the Sun Methane is nearly absent at vernal equinox (after Southern Winter)

Methane on Mars

Mumma, Villanueva, Novak, et al. (Science 2009)

Resolution-limited Spatial Maps reveal local methane plumes on scales of 500 km. Is the release relatively uniform over these regions – or is it strongly localized?

Methane on Mars

Methane varies with location and season : Local methane plumes are not always correlated with water (e.g., D, E) Methane varies strongly with season; its lifetime on Mars must be short (< 1 year)

