

Revealing the Nature of Circumstellar Envelopes Around Class O Protostars: A Connection Between Spitzer, CARMA, and SOFIA

Kalas et al.

Prenatal Stars

- Deeply embedded inside molecular clouds
- Very young 10,000 to 100,000 years old!(still cute and cuddly)
- Just a ball of dust and gas (1-10 million years until it burns hydrogen to helium— a standard star), shaped by gravity.

The Cradle of Life

- Stretching an analogy.
- The young Earth was formed in the circumstellar disk that surrounded the protosun.
- The physical conditions in that disk lead to:
 - Terrestrial planets in the 0.4 to 2 AU region
 - Gas and ice giants in the 5 to 30 AU region.

Burrows et al. 1996

The Crumbs from the Table of Star Formation

- Planets form in the circumstellar disk
 - Either through disk instabilities or dust growth
- How do they evolve to a few million years?
- Time period is central to early gas giant formation and planet migration scenarios.

TWO PLANET FORMATION SCENARIOS

Accretion model

Orbiting dust grains accrete into "planetesimals" through nongravitational forces.

Planetesimals grow, moving in near-coplanar orbits, to form "planetary embryos."

Gas-giant planets accrete gas envelopes before disk gas disappears.

Gas-giant planets scatter or accrete remaining planetesimals and embryos.

. Illi

A protoplanetary disk of gas and dust forms around a young star.

Gravitational disk instabilities form a clump of gas that becomes a self-gravitating planet.

Dust grains coagulate and sediment to the center of the protoplanet, forming a core.

The planet sweeps out a wide gap as it continues to feed on gas in the disk.

NASA And A. Feild

Star Formation: A Multi-Scale Problem

Arzoumanian et al. 2011

- What is the connection from large-scale clouds to low-mass cores
- Herschel shows the complexity and filaments—thickness of ~0.1 pc and r ~ r^{-1.5 to -2}

Spitzer: New Regime for Class 0 Protostars

- The sensitivity necessary to image the scattered light of the youngest outflow cavities.
- The morphology used to probe fundamental properties of source such as opening angle, envelope mass, etc.
 (e.g., Whitney et al. 2003b,a; Tobin et al. 2007; Robitaille et al. 2007; Seale & Looney 2008).

Scattered Light

Outflows carve cavities that allow detection of these deeply embedded objects and shock gas in the outflows

Tobin et al. 2007

Scattered Light Class 0

40[°] 30°14'20[°]

3"26"42"40" 38

Seale & Looney 2008

3 35 32 30 28 25 24 22

00

Modeling the Scattered Light

Visible (DSS / Caltech & AURA)

Infrared

Flattened Envelope around L1157 Protostar NASA / JPL-Caltech / L. Looney (University of Illinois) Spitzer Space Telescope • IRAC ssc2007-19a

8 Micron Absorption

- Mass-weighted tracer
 – not dependent on
 temperature
- About 22 sources
- Highly irregular and non-axisymmetric morphologies on scales >1000 AU, with a quarter of the sample with filamentary or flattened

filamentary or flattened dense structures

Flattened Envelope

Protostellar Zoo

Contours: $A_V = 10, 20, 30$

Tobin et al. (2010)

Protostellar Zoo

Contours: A_V = 10, 20, 30

Tobin et al. (2010)

L673

Protostellar Zoo

Contours: $A_v = 10, 20, 30$

Tobin et al. (2010)

Kinematics Example 1: L1157

- Broader linewidth in the inner envelope infall or outflow?

Kinematics Example 1: L1157

PdBI

at different velocity range

Red: 3.2-4.0 km/s Blue: 1.6-2.2 km/s Gray: Line-center

- Large-scale rotation \perp outflow
- Broader linewidth in the inner envelope: envelope-outflow interaction: envelope material entrained by outflow (Arce & Sargent 2006)

Kinematics Example 2: RNO 43

- Large-scale velocity gradient at NE side
 Velocity jump of c0.7 km/s i
- Velocity jump of ~0.7 km/s :
 - Another cloud layer along line of sight (Chen et al. 2007)
 - Colliding flow? (Heitsch et al. 2006)

Tobin et al. 2011

Kinematics Example 3: CB 230

CB230

Tobin et al. (2011)

Detailed Line Structure

CB230

Orientation of The Outflow

Tobin et al. 2011

Binary Formation

- Non-axisymmetry may induce formation of binary stars
 - Mild perturbations shown to induce fragmentation (Burkert & Bodenheimer 1993)
 - Bonnell et al. (1992) shows binary formation at large and small scales

1000 AU

Detected Binary Systems

SOFIA Observations

Chiang et al. 2010

Dust Continuum of Class 0 YSOs

- Examines the physical structure of protostellar envelopes
- Reveals the embedded circumstellar disk

 Envelope modeling with multi-wavelength data and theoretical models

 Self-consistent temperature profiles calculated by the RADMC radiative transfer code (Dullemond 2004)

Example: L1157

Dust continuum, CARMA

No disk larger than ~100 AU

Dust Continuum Modeling

L1157

- Envelope with a power-law density profile
- Best fit (preliminary)
 - $p = 2.1 \quad (\rho \propto r^{-p})$
 - $\beta = 0.8 \qquad (\kappa \propto \nu^{\beta})$
- Disk is not necessary
- Not consistent with Shu's inside-out collapse scenario
- Early grain growth

The Envelopes of Class 0 YSOs

- Good correlation between N₂H⁺ emission and 8 micron extinction
- N₂H⁺ peaks usually off protostars -- depletion
- Ordered velocity fields observed on large scales in most sources

 Not always aligned normal to outflow direction
 Multiple velocity components seen

Kinematic structures likely from a combination of infall and rotation

Impact of outflow in some cases

Conclusions

- Envelope kinematics is complex
 - Non-axisymmetric
 - Rotation, infall, outflow, velocity components, chemistry
 - Non-axisymmetry may induce formation of binary stars
- Envelope structure -> embedded disk
 Test of theoretical models
 Currently no need for disks (cf. Enoch et al. 2009)