

Exoplanet observations with JWST

SOFIA Community Task Force Tele-Talks Mark Clampin JWST Observatory Project Scientist Goddard Space Flight Center

JWST Instruments

• Each JWST instrument has a high contrast imaging mode

SI	Channel/Mode	λ (μm)	IWA	R (λ/δλ)	Contrast
NIRCam	Short λ Lyot Coronagraph	0.6 - 2.3	≥4λ/D	4, 10, 100	≤ 10 ⁵
NIRCam	Long λ Lyot Coronagraph	2.4 - 5.0	≥4λ/D	4, 10, 100	~10 ⁵
TFI	Multi- λ coronagraph	1.6 - 2.5	≥4λ/D	100	~10 ⁶
TFI	Multi- λ coronagraph	3.2 - 4.9	≥4λ/D	100	~10 ⁶
TFI	Non-redundant mask	1.6 - 2.5	0.5λ/D	100	~104
TFI	Non-redundant mask	3.2 - 4.9	0.5λ/D	100	~104
MIRI	Quadrant Phase Coronagraph	10.65	~3λ/D	20	~104
MIRI	Quadrant Phase Coronagraph	11.4	~3λ/D	20	~5x10⁵
MIRI	Quadrant Phase Coronagraph	15.5	~3λ/D	20	~2x10⁵
MIRI	Lyot Coronagraph	23	≥4λ/D	5	~10 ⁵

JWST Coronagraphs

Band-limited mask occulters

- Tunable Filter Imager (TFI) Coronagraph
 - Coronagraph: Differential Speckle Imaging
 - Contrast gain of ~10x versus NIRCam (Marois et al. 2008)

Non-redundant Mask

- Wavelength range: 1.5-2.5, 3.1-5.0 μ m
- Closure Phase Imaging
- Trades inner working angle of 0.5 λ/D against contrast

• MIRI

- 3 Quadrant Phase
- 1 Lyot

JWST Coronagraph Performance

Coronagraph Discovery Space

Disk Characterization

ACS (Visible) JWST (20 µm)

• Characterize circumstellar disk evolution during the critical 5 – 30 Myr period in dense clusters out to 2kpc and down to $\leq 1 M_{\odot}$

 Hot gas phase chemistry in future habitable zones of low mass young stars

- Disk morphology:
 - -- scattered light & emission
- Indirect evidence of exoplanets
 - e.g. Kalas et al. (2008),
 Stark and Kuchner (2008)
- Spatially resolved spectroscopy
 - Disk mineralogy

JWST is Optimum for Transit Science

- SWG review of capabilities for transit science Report
- Low background: L2 orbit & cryogenic telescope
- Apertures: Slitless and/or large slit spectroscopy
- Long dwell times: L2 orbit
- Image quality:
 - Stable PSF (also, OTE has many Degree of Freedom)
 - Pointing: Detailed error budget
- Detectors
 - Sub-arrays and "NIR direct to digital" readout (ASIC)
- Ground-testing: 3 instrument characterization phases

JWST Transit Science Instrument Modes

	Instrument Mode	λ	R	FOV	Application	
		(μ m)	(λ/δλ)			
Imaging	NIRCam	0.6 - 2.3	4, 10, 100	2 x (2.2' x 2.2')	High precision light curves of primary and secondary eclipses	
		2.4 - 5.0	4, 10, 100	2 x (2.2' x 2.2')	right precision light curves of primary and secondary eclipses	
		0.6 - 2.3	4, 10, 100	Defocused images	High precision light curves of primary and secondary eclipses for	
	NIRCam (Defocused)			radius = 0.74"	- bright targets that need to be defocused to avoid rapid saturation	
	(Deroouseu)			radius = 1.42"	- reduction of flat field and pointing errors	
				radius = 2.11"		
	MIRI	5 - 28	4 - 6	1.9' x 1.4'	High precision light curves of secondary eclipses	
	TFI	1.6 - 2.6	100	2 x (2.2' x 2.2')	High precision light curves of primary and secondary eclipses	
		3.2 - 4.9		2 x (2.2' x 2.2')	- bright targets that need to be defocused to avoid rapid saturation	
Spectroscopy	NIRCam	2.4 - 5.0	1700	2 x (2.2' x 2.2')	Transmission and emission spectroscopy of transiting planets	
	NIRSpec	1.0 - 5.0	100, 1000, 2700	1.6" x 1.6"	Transmission and emission spectroscopy of transiting planets	
	MIRI-LRS	5 -11 10		Slitless	Emission spectroscopy of transiting planets - Low spectroscopy	
		5.9 - 7.7	3000	3.7" x 3.7"		
	MIRLMRS	7.4 - 11.8	3000	4.7" x 4.5"	Emission spectroscopy of transiting planets	
		11.4 - 18.2	3000	6.2" x 6.1"	- suitable for specific spectral features e.g. CO $_{\scriptscriptstyle 2}$ @ 15 μm	
		17.5 - 28.8	3000	7.1" x 7.1"		

• NIRCam Defocused imaging for transit photometry: 4λ , 8λ , 12λ waves

NIRCam Capabilities

- High precision two-channel photometry
 - \rightarrow Primary transits (short-λ) & Secondary transits (long-λ)
 - Precision terrestrial planet light curves
 - Exoplanet mass and radii (w/radial velocity)
 - Transiting timing detection of unseen planets
 - Detection of moons, trojans and planetary rings
 - Reflectance/Thermal phase variations across the whole light curve: exoplanet atmospheric dynamics
- Long-λ spectroscopy (2.4 5.0 μm)

Primary and secondary transits of hot Jupiters (R≤1000) Secondary transits of hot earths R~50

NIRSpec Science

- Recently added 1.6'x1.6" slit for transits
- Short-λ and Long-λ spectroscopy
 - Primary and secondary transits
 - Hot Jupiters: NIRSpec can obtain spectra at a range of spectral resolutions. For the bright host stars it can conduct high precision transit spectroscopy (GKM stars) to characterize spectral features
 - Hot-Neptunes: NIRSpec can obtain transit spectra at a range of spectral resolutions. For the bright host stars it can conduct high precision transit spectroscopy (GKM stars) to characterize spectral features
 - Superearths: NIRSpec can obtain emission spectra of superearths, and detect spectral features in transmission for some atmospheric compositions (M star hosts)

NIRSpec Transit Spectrum for HD 209458 at K=12

NIRSpec Emission Spectrum for HD 209458 at K=12

Simulations by Jeff Valenti (NIRSpec Science Team)

GJ436: Simulated Transmission Spectrum

High precision spectra of gas and ice giants

Model GJ436 provided by Sara Seager

Intermediate Superearth

True Superearths are challenging

- NIRSpec 100 transits, Binned to R=100
- For multi-transit observations: sky location will be important

MIRI Science

- MIRI slitless spectroscopic mode (Low Resolution Spectrograph)
 - Detection of R~100 hot-Jupiter emission spectra in a single transit
 - Detection of small (1-2 R_{Earth}) planets transiting G, K & M stars
- MIRI Medium Resolution Spectrograph
 - Best applied to detection of specific spectral features e.g. CO₂ feature at 15 μm

Secondary Eclipse of a hot (T~500K) exo-Neptune observed at 15 µm (Deming et al. 2009)

JWST Transit Science Summary

Observation	Targets	R	Science
Transit light	Gas giants	5	- Exoplanet properties
Curves	Intermediate planets	5	e.g. Mass, radius -> Physical structure
	Superearths	5	- Confirmation of Terrestrial planet transits
			- Transit timing: detection of unseen planets
Phase light	Gas giants	5	- Day to night emission mapping: dynamical
curves	Intermediate planets	5	models of Exoplanet atmospheres
Transmission	Gas giants	3000	Spectral line diagnostics
Spectroscopy	Gas giants	100-500	- atmospheric composition e.g. C, CO_2 , CH_4
	Intermediate planets	100-500	- follow-up of survey detections: TESS & Kepler
	Superearths planets	≤100	
Emission	Gas giants	3000	- Spectral line diagnostic
Spectroscopy	Gas giants	100-500	- Planet temperature measurements
	Intermediate planets	100-500	- follow-up of survey detections: TESS & Kepler
	Superearths planets	≤100	

- Characterization of habitable superearths
 - e.g. Kaltenegger & Traub, 2009, Palle et al. 2009, Deming et al. 2009
 - Spectral characterization of habitable superearths with late type parent stars will require ≥ 100 transits (spectroscopy or filter-imaging)

Collaborators

- JWST Science Working Group
 - JWST Science Instrument Teams: inc.Tom Greene, John Krist, Chas Beichman
 - JWST Transit Working Group
- Eliza Miller-Ricci (MIT), Sara Seager (MIT) and Dimitar Sasselov (CfA)
- Drake Deming (GSFC)
- Don Lindler (SigmaSpace)

Web Site: <u>http://jwst.gsfc.nasa.gov/</u>

