Supernovae in Molecular Clouds: *Extreme Laboratories for the Dense ISM*

IC 443 - 24µm warm dust

W44 - 3.6µm, 4.5µm (H₂), 8µm

John W. Hewitt (NASA Goddard)

J. Rho, W.T. Reach (SOFIA Science Center), Farhad Yusef-Zadeh (Northwestern), Mark Wardle (Macquarie), M.A. Andersen (ESA), J.P. Bernard (CESR)

Extreme Laboratories

Supernovae are grand experiments: 10⁵¹ ergs injected at a point in the ISM.

- Particle Accelerators
 Energy sufficient to produce ~PeV CRs ('the knee')
- Probe of Molecular Cloud structure shocks (close to planar), chemistry reset pressure balance: clumps, inter-cloud, diffuse gas
- Dust Grain Processing All ISM dust is processed by SNRs within ~110 Myrs

SNR/MC Interaction

Typical Molecular Cloud

- dense clumps, in diffuse molecular gas
- gas pressure ~10⁵ K cm⁻³ confines clumps, supports against collapse

RADII OF H II REGIONS A	ND WIND BUBBLES
-------------------------	-----------------

Mass (M_{\odot})	Туре	R _{ionized} (pc)	\dot{M} $(M_{\odot} \text{ yr}^{-1})$	τ _{ms} (yr)	R _b (pc)
20	09 V	13.6	1×10^{-7}	7×10^{6}	11
16	B0 V	8.0	6×10^{-8}	9×10^{6}	10
12	B1 V	1.6	6 × 10 ⁻⁹	13×10^{6}	5.3
10	B2 V	1.0	5×10^{-10}	18×10^{6}	2.6
8	B3 V	0.5	1×10^{-11}	26×10^{6}	0.8

 $\sim 10^4 M_{sol}$ cloud yields $\sim 1 \text{ O-star}$

(Chevalier 1999)

Prototypical SNR/MC Interaction

2MASS NIR imaging, Rho et al. (2001)

SNR IC 443 interacting w/10⁴ Msol cloud

 $\frac{Parameters}{age \sim 10-30 \text{ kyr}}$ $\frac{distance = 1.5 \text{ kpc}}{radius = 7.4 \text{ pc}}$ $\frac{v_s \sim 100 \text{ km/s}}{v_s \sim 100 \text{ km/s}}$

H2 shell in south NE fast shock, low density (radiative shell) NW shock breakout (radio) lowers pressure in shell

Spitzer GLIMPSE Survey of SNRs

red = 8 μ m, yellow = 5.8 μ m, green = 4.5 μ m, blue = 3.6 μ m

(from Reach et al. 2006)

Supernova Remnants Interacting with Clouds

- Spitzer GLIMPSE survey detected 18 IR-bright SNRs
- Colors indicate dominant cooling lines and shock type.

Supernova Remnants Interacting with Clouds

- Spitzer GLIMPSE survey detected 18 IR-bright SNRs
- Colors indicate dominant cooling lines and shock type.

However...

Color-typing shows large scatter, even within the same SNR

IR spectroscopy is clearly needed

Spitzer Spectroscopy of IR-bright SNRs

- · brightest IR clumps in 14 SNRs
- · long-slit: remove Galactic emission (Hewitt et al. 2009, Andersen et al. 2011)

Must explain mix of IR lines: H₂ S(0)-S(7) [Fe II], [Ne II], [Si II], [S III] PAHs, Dust continuum

Spectra: both H₂ and lonic lines

Ionic, H₂ lines spatially separated along IRS slit => multiple shocks

(Hewitt et al. 2009)

H₂ Excitation in Kes 69

- Two H₂ components (warm, hot) $T(H_2)=320$ 1150 K OPR = 1.0 3.0
- H₂ fitting with shock models (Le Bourlot 2002)

$V_{S} =$	10	40 km	n/s
n _H =	10 ⁵	10 ⁴ cr	n-3
$P_S = 1$	x10 ⁻⁶	3x10 ⁻⁷	dyne cm ⁻²

over-pressure in warm, dense clumps

G346.6

H₂ Excitation: Ortho-to-Para

Fraction or Ratio

0

warm H₂: OPR ~ 0.4-3 equilibrium: OPR_{LTE} ~ 3

Para-to-ortho H₂ conversion via reactions with atomic-H:

 $\tau_{conv} \approx 3000 \text{ yrs} [100 \text{ cm}^{-3}/n(\text{H})]$ E_A/k ~ 4000 K

OPR < 3 in $T_{H2} = 250-600$ K

requires $\tau_{shock} < \tau_{conv}$

=> slow C-shocks into cold, quiescent clouds; no significant pre-heating of MC

Fast, Dissociative Shocks

Excitation of ionic species: Fe+, Ne+, Ne++, Si+, S++ requires $V_S > 100 \text{ km/s}$, $n_e \sim 10^{2-3} \text{ cm}^{-3}$

SOFIA teletalk: J.W. Hewitt

4 May 2011

Shocks into multi-phase Molecular Clouds

(Reach et al. 2005)

Dust Emission from SNRs

Dust continuum modeling (Andersen, Rho et al. 2011) Parameters: Big Grains, Very Small Grains, PAHs, and Radiation Field $0.01-0.2 \ \mu m$ $0.001-0.01 \ \mu m$

MJy/sr

Good fits obtained $T_{BB} = 35-50 \text{ K}$

 SNRs
 MW

 YVSG/BG
 0.23-1.0
 0.13

 YPAH/BG
 0.01-0.2
 0.004

=> Processing of grain size distribution by SNR shock

Dust Processing by SNR shocks

initial

mass

Shattering in dense/slow shocks, destroys BGs, but not VSG/PAHs

Sputtering efficient for fast shocks, affecting all grain sizes

from Borkowski et al. 1995

VSG/BG increases with V_S indicative of shattering

Dust Heating by SNR shocks

SNRs have *enhanced* radiation field (due to fast shocks, [Fe II])

Dust Heating by SNR shocks

Fit Radiation Field, case B H-recomb. (normalized to ISRF)

Dust continuum is a significant coolant!

Radiative Cooling: SNR/MCs

L_{H2} is only ~0.6-6% of L_{Dust} in SNR/MCs

[O I] 63µm line detected in 10/14 SNRs, $L_{[OI]}/L_{Dust} \sim 1-7\%$

Radiative Cooling: [O I] 63 µm

ISO mapping of [O I] brightest at SNR shell (Reach & Rho 1996)

Spatially correlated with H_21-0 S(1) line (Burton et al. 1990)

Possible origins:

Fast C-shock (hot H₂) produces significant [O I] emission, only if oxygen chemistry suppressed (eg, high n_e)

Slow C-shock (warm H_2)... 10 km/s, 10⁵ cm⁻³

Oxygen Shock Chemistry

"If it moves, it emits water" - Lars Kristensen (WISH)

for T > 400 K $O + H_2 \rightarrow OH + H$, $OH + H_2 \rightarrow H_2O + H$

C-shocks produce copious H₂O

Chemical models predict all available O into H₂O, with little OH (Kaufman & Neufeld 1996)

Conflicting observational evidence

Unexpectedly high OH/H₂O ratio ~ 15 (3C391; Reach+ 1998)

IC443 is surprisingly lacking in water... (SWAS, Snell+ 2005)

OH Masers: Signposts of C-shocks

 Uniquely trace slow shocks into dense molecular clump in SNRs

discovery paper: Frail et al. (1994) pump models: Lockett et al. (1999), Wardle (1999)

 Need line-of-sight geometry to maximize velocity-coherence
 V_{LSR} => kinematic distance

from Wardle & Yusef-Zadeh (2002)

OH Masers: Signposts of C-shocks

- Only 24/265 SNRs have detected OH masers
- Require narrow conditions:
 - dense gas, n=10⁵ cm⁻³ \Rightarrow MC ~10⁴⁻⁵ M_{sol}
 - •T_k=50-125 K
 - •T_{dust}<75 K: intense FIR kills 1720 MHz pumping
 - Require a broad cooling region only present for C-shocks (not J-shocks)
 - Projected sizes $\sim 10^{16}$ cm \approx shock width
 - •Zeeman splitting => line-of-sight B ~0.1-5 mG

```
• N(OH) = 10^{16}-10^{17} cm<sup>-2</sup>, X(OH/H<sub>2</sub>) ~ 10^{-5}
```

ocks

H₂ line emission

Right Ascension (B1950)

Anomalous Oxygen Chemistry

Post-shock OH production

(from Wardle 1999 ApJ 525L, 101)

A Prototypical Cosmic Ray Accelerator

Evidence for an enhanced CR density in IC443:

- GeV/TeV γ-ray detection supports ~1-10% E_{SN} converted to CRs (Abdo et al. 2010, ApJ 712, 459)
- "Flat" radio spectral index, α ~ 0.36 suggests CR interactions with dense gas (Castelletti et al. 2011, arXiv:1104.0205)
- H₃+ absorption shows ς_{CR} > 10¹⁵ s⁻¹ enhanced ~100x ISM rate ς_{CR} ~ 10¹⁷ s⁻¹ (Indriolo et al. 2010, ApJ 724, 1357)
- Lower ⁷Li/⁶Li isotopic ratio due to Li production from CR spallation (Ritchey, et al. 2011)

20cm Radio 24μm Dust Th. X-rays >5 GeV γ-ray contours (from Fermi LAT)

GREAT Diagnostics of SNR shocks

Basic Science observations 1 hour to observe SNR G357.7

Velocity resolved spectra of: [C II], [N II], OH 163µm, CO 11-10

ISO detection for bright SNRs (Reach & Rho 2000) 20cm Radio Continuum

<u>SOFIA+Herschel Science Goals</u>
1. What is the origin of OH?
2. C/J-Shocks (Molecular + Ionic lines)
3. Feasibility of future observations

SNe as probes of Molecular Clouds

- Pristine molecular clouds, destructively probed by SNR revealing a complex multi-phase environment
- SNR/MC shock cooling dominated by H-recomb. emission, re-radiated as IR dust emission
- Grain processing: shattering decreases large grain sizes
- Dense cloud acts as target for CR protons to be measured, SNe yield few $\%~E_{\text{SN}}$
- Far-IR window with SOFIA, Herschel can provide resolution to complicated shock modeling of IR lines.

SOFIA Observations of Shocks/PDRs

